1. Cindy works at an hourly job where her pay is determined by a function P. If Cindy works an average of t hours a week over the course of a year then she makes $P(t)$ dollars in that year where

$$P(t) = 600t + 800.$$

Additionally, the amount that Cindy puts into savings depends on the amount of money that she makes in a year according to a function S. That is, if she makes d dollars in a year then she will put $S(d)$ dollars into her savings account that year where

$$S(d) = \frac{3d - 8000}{20}.$$

(a) She wants to know how many hours a week that she needs to work in order to make a given amount of money. Find a function f such that if she wants to make d dollars in a year then the average number of hours she needs to work per week during that year is $f(d)$.

Answer: $f = P^{-1}$ so $f(d) = \frac{d - 800}{600}$

(b) Cindy’s mom is worried about her and wants to know how much she will save depending on how many hours she works. Find a function g such that if she works an average of t hours a week over the course of a year then she puts $g(t)$ dollars into savings in that year.

Answer: $g = S \circ P$ so that $g(t) = 90t - 280$

(c) Cindy also wants to know how many hours a week that she needs to work in order to save a given amount of money. Find a function h such that if she wants to save m dollars in a year then the average number of hours she needs to work per week during that year is $h(m)$.

Answer: This can be done with either $h = g^{-1}$ or $h = P^{-1} \circ S^{-1}$ so that $h(m) = \frac{m + 280}{90}$

2. The number of guitars that a particular store sells in a week is a function of the price for which they sell them. If they sell the guitars for p dollars then they sell $g(p)$ guitars where

$$g(p) = \frac{5(360 - p)}{p - 80}.$$

The store’s costs in a week are a function of the number of guitars that they sell that week. If they sell n guitars then their costs for that week are $c(n)$ dollars where

$$c(n) = \frac{(n + 2)^2 + 40000}{500}.$$

(a) Find a function M such that if the store wants to sell n guitars in a week then the store needs to charge $M(n)$ dollars for each guitar.

Answer: $M(n) = g^{-1}(n) = \frac{800x + 1800}{x + 5}$

(b) Find a function f such that if the store decides to sell their guitars for p dollars then the store’s costs for the week are $f(p)$ dollars. Be sure to simplify your answer completely.

Answer: $f(p) = \frac{40009p^2 - 6409840p + 2586895600}{500p^2 - 80000p + 3200000}$

3. Alicia works as a waitress in a restaurant. She uses the functions T and P to approximate the money she makes in an evening. If she waits on a table whose total bill is p dollars then she will get a tip of approximately $T(p)$ dollars where

$$T(p) = \frac{3}{20} (p + 10).$$

Also, if she waits on a table seating n people then the total bill at that table is approximately $P(n)$ dollars where

$$P(n) = 15n - 5\sqrt{n} + 10.$$

(a) Find a function f such that if she waits on a table seating n people then she gets a tip of approximately $f(n)$ dollars.

Answer: $f(n) = (T \circ P)(n) = \frac{9}{10} n - \frac{3}{2} \sqrt{n} + 3$

(b) Define the function g as follows: If, after a party leaves the table, she sees that they tipped t dollars then the party’s total bill was $g(t)$. Find and simplify a formula for $g(t)$.

Answer: $g(t) = T^{-1}(t) = \frac{20}{3} t - 10$
4. Ned, the park ranger, monitors animal populations in a particular park. He finds that \(m \) months into the year there are approximately \(W(m) \) thousand wolves in the park where

\[
W(m) = e^{-0.01(m-6)^2}.
\]

Additionally, the wolf population influences the rabbit population since wolves feed on rabbits. Ned finds that whenever there are \(w \) thousand wolves in the park there are approximately \(R(w) \) thousand rabbits in the park where

\[
R(w) = 2 - 10 \ln w.
\]

In this context, \(m = 0 \) corresponds to the first moment of January and \(m = 12 \) corresponds to the last moment of December but this is not really important to the problem.

(a) At what moment(s) during the year (if any) are there 500 wolves in the park? (Any answers should be in months rounded to two decimal places.) Is \(W \) an invertible function?

Answer: There are no months during which there are 500 wolves in the park.

(b) Let \(r \) be the number of rabbits in the park (in thousands) when there are \(r \) thousand rabbits in the park. Find and simplify a formula for \(V(r) \).

Answer: \(V(r) = R^{-1}(r) = e^{0.1r - 0.2} \)

(c) Define \(F(m) \) to be the number of rabbits (in thousands) in the park \(m \) months into the year. Find and simplify a formula for \(F(m) \).

Answer: \(F(m) = (R \circ W)(m) = 0.1m^2 - 1.2m + 5.6 \)

5. The function \(V(r) = \frac{4}{3} \pi r^3 \) gives the volume (in \(\text{in}^3 \)) of a sphere with radius \(r \) (in inches).

(a) If we are inflating a spherical balloon at a rate such that its radius after \(t \) seconds is \(R(t) = 7 \log(t + 1) \) (in inches) then find a function \(S \) such that after \(t \) seconds the volume of the balloon is \(S(t) \) (in \(\text{in}^3 \)).

Answer: \(S(t) = 1372 \pi (\log(t + 1))^3 \)

(b) Define \(R(v) \) to be the radius of a circle whose volume is \(v \). Find and simplify a formula for \(R(v) \).

Answer: \(R(v) = V^{-1}(v) = \sqrt[3]{\frac{3v}{4\pi}} \)

6. If a computer manufacturer sells \(u \) computers in a month then his revenue for the month (in dollars) is approximated by \(R(u) = 1000 + 1200u \). If he spends \(d \) dollars on advertising in a month then he will sell \(C(d) = 0.7\sqrt{d} - 3 \) computers in that month.

(a) Does the function \(R \circ C \) have any meaning in the context of this model? If so, explain the meaning and find a formula for the function.

Answer: \(R \circ C \) is the function which inputs advertising dollars and outputs revenue. \((R \circ C)(d) = 840\sqrt{d} - 2600 \)

(b) Does the function \(C \circ R \) have any meaning in the context of this model? If so, explain the meaning and find a formula for the function.

Answer: \(C \circ R \) has no meaning in the context of this model.

(c) Is \(R \) an invertible function? If so, find \(R^{-1} \) and explain its meaning in the context of the model.

Answer: \(R \) is invertible; \(R^{-1} \) inputs revenue and outputs the number of computers sold in the month. \(R^{-1}(r) = \frac{1}{1200} x - \frac{5}{6} \)

(d) Is \(C \) an invertible function? If so, find \(C^{-1} \) and explain its meaning in the context of the model.

Answer: \(C \) is invertible; \(C^{-1} \) inputs the number of computers sold and outputs the amount of money (in dollars) that is spent on advertising. \(C^{-1}(u) = \frac{100}{49} u^2 + \frac{600}{49} u + \frac{900}{49} \)