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Abstract. In recent yeam much aaention has been paid to the quantized evolution of the centre- 
of-mass momentum and position of ultracold atoms in light fields. We consider the effects 
resulting from the quantization of the extemal angular momentum variables. We investigate 
how spin and orbital angular momentum of light are transferred to internal and extemal angular 
momenhlm of an atom in dipole and quadrupole h'ansitions. 

1. Introduction 

When a light field interacts with an atom, one can usually neglect the centre-of-mass motion 
of the atom, and consider the effects on the intemal electronic motion only. It suffices, e.g., 
to specify the change in energy and angular momentum of the electron in the centre-of-mass 
system. 

For a cold atom, however, the recoil effect of even a single photon can no longer be 
neglected: a single photon can change the external state of the atom. Even in this case the 
extemal atomic motion can in general still be described classically. Only when the atom is 
cooled down further to the recoil temperature, and its de Broglie wavelength AB becomes 
comparable to the wavelength A of the light, must the external motion be quantized [l]. 

The prime example of a pure quantum effect arising from the quantized extemal 
motion of an ultracold atom is the effect of velocity-selective coherent population trapping 
[Z]. An atom in a light field gets trapped in a state that is insensitive to the light, and 
which is a superposition of two states with different extemal momenta, differing by two 
photon momenta. A cooling scheme based on this mechanism has been shown to lead 
to temperatures below the recoil temperature [2]. This idea has been extended to three 
dimensions [3] and to different atomic transitions [4]. 

Another example is the quantized motion of cold atoms in optical potential wells with 
the size of a wavelength, produced by two counterpropagating laser beams [SI. Here atoms 
can be trapped in a single well and can occupy a single quantized energy level therein. 
Also the occurrence of tunnelling from one well to an adjacent one has been predicted 
[6]. The presence of the discrete energy levels and the localization of an atom in one well 
have heen observed experimentally [7, 81. Recently cooling of atoms and their quantized 
motion in optical wells has also been observed in two- and three-dimensional laser beam 
configurations [9-111. 

Now photons also carry angular momentum [12]. Therefore, photons can exert, in 
addition to a force, also a torque on an atom. There is one important difference, however: 
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the momentum of the photon is always transferred to the external momentum of the 
atom, whereas the photon angular momentum in general is transferred to the internal 
atomic angular momentum. In fact, the well known dipole selection rules 61 = *I refer 
exclusively to the internal electronic state, and are understood as arising from the spin 
angular momentum of the photon, which is equal to 1. Recently it has been shown that 
also orbital angular momentum of light, arising from the transverse spatial dependence of a 
light beam, is a meaningful concept, accessible to experimental verification [13-161. This 
quantity will in general be transferred to the external angular momentum of an atom [17]. 
This implies that it is the orbital angular momentum of light that can make atoms rotate 
around a given point or axis. 

Some questions remain: what effects arise for ultracold atoms, when the external angular 
momentum must be quantized? What happens in a quadrupole transition, where 81 = f2? 
Does the second unit of angular momentum come from the orbital angular momentum of the 
photon? In order to answer these questions, we investigate the selection rules concerning 
(internal and external) angular momenta during the absorption or emission of a photon by 
an atom. We wish to clarify the conservation laws underlying these rules, and in particular 
the role of the centre-of-mass motion of the atom. We will discuss some unfamiliar effects 
on cold atoms resulting from angular momentum transfer between photons and atoms. 

Throughout this paper we will use the long-wavelength approximation, i.e. we assume 
that the wavelength A of the light is large compared to the size a of the atomic system under 
consideration. This justifies making an expansion in the small parameter a/h. It should be 
noted that this approximation does not imply any restriction on the de Broglie wavelength 
of the atom: hB and a are independent atomic quantities, determined by the size of the 
external and of the internal part of the wavefunction, respectively. This paper is organized 
as follows. In order to be able to discuss conservation laws of angular momentum one 
needs to define electromagnetic field modes with well defined angular momenta. Several 
possible definitions are reviewed in section 2. In section 3 we examine in some detail 
the selection rules for photon absorptions and emissions by an atom. Emphasis is put on 
the modifications that arise due to the inclusion of the centre-of-mass motion of the atom. 
Some explicit examples are presented in section 4. They serve to show how spin and orbital 
angular momenta of a photon are distributed over the intemal and external angular momenta 
of the atom, and why the temperature plays an important role. The results are summarized 
and discussed in section 5. Finally, in the appendiv we define the internal and external 
variables as used in this paper. 

2. Photons and angular momentum 

We first establish the notation and definitions for the well known multipole waves [E, 181, in 
which photons are in eigenstates of the operators for total field angular momentum J z  and its 
projection .Iz. In the second subsection, we define photons in eigenstates of the projected 
‘orbital’ and ‘spin’ angular momenta L, and S, [17]. ‘Finally, we will briefly discuss 
Laguerre-Gaussian modes, which have been shown to be producable by a transformation 
of laser beams [U], and which also possess well defined S, and L,. 

A photon is here defined as an elementary excitation of a field mode. A field mode 
is represented by a mode function FA(T), which is a transverse vector solution to the 
wave equation with wave number kA = 01 fc. Each mode function can be chosen as the 
eigenfunction of a prescribed set of four commuting Hermitian operators. The mode is then 
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Table 1. Notation for the quantum numbers related to the various angular momenta of photons 
and atoms. 

Species Operator Quantum number Eigenvalue 

Photon J' i f i2 j ( j  + 1) 
Photon J, m mfi 
Photon S, s sfikJk 

Atom Jint,z m mfi 
Atom J?, 1 fi21(1+ 1) 

Atom J& L f i 2 ~ ( ~  + 1) 
Atom JW M m 
Atom J? ... J h 2 J ( J +  1) 

specified by the four eigenvalues of these operators, denoted collectively by A, which are 
at the same time the quantum numbers of the photons from that field mode. 

Once we have thus defined a complete set of normalized transverse vector functions FA, 
the operator A for the vector potential in the Coulomb gauge can be expanded in this set 
as [I91 

where a i  and a! are the annihilation and creation operators for photons in the mode A. 
In the examples we will consider, two of the four quantum numbers will refer to angular 
momentum variables. The notation for these variables is summarized in table 1. 

2.1. Multipole waves 

We review here some well known results concerning the multipole waves, as described in 
112, 191. One constructs eigenstates of the four commuting Hermitian operators for total 
angular momentum J z ,  its projection along the z axis Jz,  energy, and parity. The set of 
quantum numbers is correspondingly given by A = (j, m, w. P), where the parity P takes 
the values i l ,  and where o is the frequency. There are two types of waves: electric 
multipole waves with parity P = (-l)j  and magnetic multipole waves with opposite parity 
P = (-I)j+'. The explicit expressions for the mode functions can be found in [12], or, for 
the corresponding electric and magnetic fields in [19]. The only multipole fields that are 
non-vanishing in the origin are the electric dipole waves with j = 1 and m = f l ,  0. 

2.2. Bessel waves 

One can also construct field modes as the eigenfunctions of the commuting set of operators 
for the projection of the angular momentum Jz, linear momentum Pz, energy and 'spin' S,. 
The corresponding quantum numbers are h = m, kz, o, s, where Fik, is the momentum in 
the z direction, and where s = f l  denotes the polarization or helicity (right or left hand). 
Only for waves propagating in the z direction, i.e. for waves with kz = f k ,  is the quantum 
operator S, a true spin angular momentum operator [17, 201. In that case it has discrete 
eigenvalues 91. Explicit expressions for the corresponding mode functions FA were derived 
in 1171. The result takes the form (the i refers to the polarization index s) 
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1 k2 f k  
-(Fx - iFy) = -f(kt, kz, m - 1) Jz 2k 

where the functions f(kt, kz,  m) are defined in cylindrical coordinates (p ,  z ,  $J) as 
(3) 

Here J,  is the mth-order Bessel function, fik, is the momentum in the direction perpendicular 
to the z direction: k: = k2 - k:, and N is a normalization constant. Note that these modes 
do not have well defined total angular momentum Jz, nor a definite parity. The only fields 
that are non-vanishing in the origin are those with m = Al. 0. 

These waves generalize so-called Bessel beams, which are proportional to the zeroth- 
order Bessel functions, and which have been produced recently to moderately high intensity 
using a specific zone plate configuration [Zl]. 

2.3. Laguerre-Gaussian beam 
LaguerreGaussian (LG) beams are special solutions to the paraxial equation [ZZ]. They 
belong, therefore, to a class of exact solutions to an approximate equation describing 
light beams with a well defined propagation direction. The LO modes are cylindrically 
symmetric beams, with an azimuthal dependence given by exp(im4). They can be viewed as 
superpositions of Bessel waves with fixed value of m and with different kt << k. These beams 
can be produced from (laser) HermiteGaussian beams by using a special configuration of 
astigmatic cylindrical lenses [13-151. Thus one has been able to produce modes with up to 
three units of orbital angular momentum Lz per photon [15]. 

3. Selection rules 

We review here how the selection rules for photon absorption and emission processes arise 
in the case that the atomic centre of mass motion is neglected. For more details see [HI.  
Subsequently we include this extemal motion, and investigate the resulting modifications 
of the selection NI= and conservation laws. 

3.1. Centre of mass is neglected 
The atom is modelled by a spinless electron with coordinate T and momentum p ,  charge -e 
and mass /.& that is bound to the origin by a given potential V(r ) .  The electron is confined by 
this potential to move in a region lrl c a. We neglect the centre-of-mass motion, effectively 
assuming the atom to have an infinitely heavy nucleus. The centre-of-mass position R is 
not a dynamical variable, but its value is fixed and equal to R = 0. 

The electron interacts with an extemal electromagnetic field, which is represented by 
the vector potential A in the Coulomb gauge. The interaction part of the Hamiltonian is, 
neglecting the A' termt. given by 

f(kt, kz ,  m) = Jm (ktp) eXp(ik,z) exp(im4)lN. 

e 

IL 
H, = -A(r) . p .  (4) 

The wavelength of the light is assumed to be long, so that it is legitimate to expand in a/A. 
This boils down to expanding the operator A(r) (i.e. the field modes FA) around the origin, 

(5) A(T) = A(0) + (T . V)A(O) + . . . . 
t At the low intensities used in laser cooling this is certainly a valid appmximation. Furthermore, in lowest order 
in =/A,  this ierm contributes only a (small) energy shift of all states. 
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3.1.1. ,Dipole trunsitions. The first term of the expansion yields the dipole interaction 

(6) 
e 

H,E' = - p .  A(0). 
P 

If the matrix element 

(+fIHPI+i) 

of this operator between some initial state I+i) and some final state I$f) is non-zero then 
the corresponding transition is an electric dipole transition. Let the initial atomic state be an 
eigenstate of total angular momentum .I& and of the projection Ji.t,z with eigenvalues 1(l+1) 
and m: I&) =~ 11, m). Then a dipole transition to a final state of the form I+f)  = If', m') is 
possible if and only if at least one the matrix elements 

U', m'lpll, m) 

is non-zero. This leads to the well known dipole selection rules [18] for Sm = m' - m and 
for SE e l '  - 1, 

Sm = fl, 0 SI = f l .  (7) 

The usual interpretation of these rules is that they express angular momentum conservation, 
since the photon has spin 1.  Indeed, if one makes an expansion of the field in multipole 
waves, then only one term has a non-vanishing value at the origin, namely the electric 
dipole field with total angular momentum j = 1, and projections m = f l ,  0. Thus, angular 
momentum is conserved, as only the electric dipole wave contributes to the dipole interaction 
(6). Parity is conserved as well, since the parity of an elctric dipole photon is odd, while 
the parity of the electron state changes sign. 

3.1.2. Higher order transitions. The second term in the expansion (S), of first order in a/)., 
yields two different types of interaction terms: first the magnetic dipole Hamiltonian of the. 
form 

and second the electric quadrupole interaction 

e 
P 

(9) H,"Q = -&Q : ( rp  + p r ) .  

We defined here 

&I, = $([vA(o)l' - VA(0)) &EQ = ~([VA(O)I' + VA(0)) (10) 

where the superscript t indicates the transpose of a tensor: q; = I;. i .  The quantity &D is 
proportional to the magnetic field, &EQ to the gradient of the electric field, both evaluated 
at the origh. A magnetic dipole transition is allowed if one of the matrix elements 

(+fI(Tp -Pr)l+i) 
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is non-zero. The off-diagonal components of this tensor operator contain the Cartesian 
components of the angular momentum operator, the diagonal part is a pure number. Neither 
operator can change the value of E ,  while only L, and L, can change m by one unit. Thus 
the selection rules are found to be [IS] 

Sm = f l ,  0 SE = 0. (11) 
Analogously, one finds the electric quadrupole selection rules I181 

Sm = f2, f l ,  0 61 = f2.0. (12) 
In the multipole expansion the gradient of the field is non-vanishing at the origin for two 
kinds of waves: the magnetic dipole wave, with angular momentum 1, and the electric 
quadrupole wave with angular momentum 2, both with even parity. Hence, the selection 
rules (11) and (12) express, again, conservation of both angular momentum and parity. 
The usual comment is, that since the spin of the photon is 1, the second unit of angular 
momentum in a quadrupole transition must come from orbital angular momentum of the 
light field. In the next subsection we will show that this is not strictly true. Summarizing 
we note that in the multipolar expansion of the interaction 

(i) in each different order of the expansion the atom interacts with a different multipole 
wave, 

(ii) in lowest (electric dipole) order the spatial field dependence is neglected. Each 
higher order takes higher-order gradients of the field into account, 

(iii) each expansion term of the interaction Hamiltonian is invariant under rotations 
around the origin. Therefore the selection rules express conservation of angular momentum 
of the corresponding multipole field and the electron, 

(iv) external atomic angular momentum is excluded. The internal angular momentum 
change is determined completely by the angular momentum of the multipole wave. 

3.2. Centre of M S S  is included 
In this subsection we consider a bound system consisting of N + 1 charges qi, with masses 
pi, where the total mass is M and the total charge is zero. The interaction Hamiltonian is 
given by 

This has to be rewritten in terms of internal and external variables, by using (A3) from the 
appendix. The former variables are denoted by Greek symbols, the latter by capital ones. 
We keep the long-wavelength approximation, but allow the mass M to be finite. We thus 
include the centre-of-mass motion. Therefore, instead of expanding the field around the 
origin, we now have an expansion of A around the centre of mass (see appendix), 

A(To) = A(R) - V A(R) + . . 
(i: M ) 

A ( T ~ )  = A(R) - . V A(R) + (pi . V)A(R) + . . . . , '  (14) (jll M 
Notice that one does not obtain the multipolar Hamiltonian in this way. In order to do so, 
one should in addition apply a unitary transformation [19, 231: this step is not necessary, 
however, for obtaining the selection rules. 

The state vector of the atom is given by the direct product of an internal part I@) and 
an external part IY). Now also the latter part can change during the emission or absorption 
of a photon, leading to selection rules for external variables. 
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3.2.1. Dipole transitions. To lowest order in a/?. one finds the dipole term 
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Note that the full spatial dependence of the field has been taken into accounr since R is 
now a dynamical variable. Each single term in the summation leads to the usual dipole 
selection rules for the corresponding internal variables mi and l i ,  whereas the other quantum 
numbers for j # i do not change. Therefore, for the internal quantum numbers mi, li and 
also for m = li one finds the selection rules (7). 

Additional selection rules now exist for the external angular momentum. They are found 
from the requirement that the matrix elements of A(R) between the external parts of the 
atomic initial and final states be non-vanishing. These selection rules depend explicitly on 
the spatial dependence of the field modes. In particular, they are different for multipole 
waves and Bessel waves. Explicit examples will be given in section 4. 

Hence, the conservation law now refers to the total angular momentum, including the 
external atomic part. This fact implies, for instance, that an electric dipole lransition is also 
possible in a field with angular momentum j > 1. This can be understood in two ways. 
First, the remaining angular momentum can now be absorbed by the external motion of the 
atom. Second, the field is sampled by the atomic wavefunction, not only at the origin, but 
around R with a width determined by the de Broglie wavelength. Therefore, the fact that 
a higher-order multipole field vanishes at the origin, no longer implies that the transition is 
forbidden. 

3.2.2. Higher order transitions. The first-order terms in HI, which are linear in the gradient 
of the vector potential, can be grouped according to 

mi and for 

For an atom the ratio p i / M  is small, so that the first term is negligible compared to the 
second. The thud term describes in effect a dipole coupling of the external motion with the 
magnetic field it is equivalent to the Rontgen term, which has recently been shown to be 
necessary for a consistent description of the centre-of-mass motion for cooled atoms 1231, 
and which leads to the existence of a geometric phase analogous to the Aharonov-Casher 
effect [24]. We concentrate on the second line, which can be separated into two terms, 

where &Q and Bm are given by the same expressions (IO) but now evaluated at R For 
each intemal angular momentum quantum number mi and li one finds the same selection 
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rules (11) and (12) as before. For the external angular momentum one finds additional 
selection rules from the requirement that the gradient of A have non-zero matrix elements 
between initial and final external atomic stat-. Again, the latter rules depend on the explicit 
spatial dependence of the field modes, and will be different from those in a dipole transition. 
For details see section 4. 

We note that the inclusion of the extemal atomic motion leads to the following 
modifications in comparison with the results from the preceding subsection. 

(i) In each order of the expansion the atom interacts with the total field. 
(ii) In each order the full spatial field dependence is included. 
(ii) Each expansion term of the interaction Hamiltonian is invariant under rotations 

around the origin. Therefore the selection rules express conservation of angular momentum 
of the total field and the atom. 

(iv) External atomic angular momentum is included. The change in internal angular 
momentum is determined not only by the angular momentum of the field but also by the 
change in external angular momentum. 

4. Jllustrations 

We start this section by having a closer look at dipole transitions in a field with arbitrary 
angular momentum j > 1. Next we consider electric quadrupole transitions, being the 
lowest-order transitions in which the atomic ingular momentum can change by two units, 
in a field with angular momentum 1. 

4.1. Electric dipole transitions 

The transition probability for going from a given initial to some final state in a dipole 
transition is determined by the square of the matrix element 

If one makes the usual approximation of neglecting the centre-of-mass motion, then first of 
all the variable R is a fixed position in space. The first part of the matrix element, then, 
reduces to 

A(R)Wfl'%) 

which implies that, indeed, the external state of the atom does not change. This part will 
contribute only to the total transition rate, but does not change the angular momentum or the 
parity of p i ) .  Furthermore, if the vector potential vanishes at the centre-of-mass position, 
then the transition is forbidden. Now, when the external motion is ,quantized, R becomes 
a dynamical variable. The matrix element 

is non-zero only when the external state changes; the external state can change parity and 
can absorb angular momentum. If A vanishes at the average centre-of-mass position, it is 
no longer'implied that the corresponding matrix element vanishes. Still, the electric dipole 
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transition probability in such a field will be negligibly small in general. For example, in an 
electric multipole wave with angular momentum j ,  the field around the origin is proportional 
to [12, 191 

for r / A  < 1. Thus, if ,the width of the centre-of-mass wavefunctions of the atom is given 
by Ax << A, the transition probability is proportional to (ZnAx/A)2j-2, which is negligibly 
small, except for j = 1. For ultracold atoms, however, the width of the wavefunctions 
of IYi) and IYf) is appreciable, as it is determined by the small momentum spread Ap, 
according to Ax > E/Ap .  For atoms cooled down to the recoil limit, Ap hlh, one 
obtains 

A 
2n 

Ax > -. 

Hence, in this case the field is probed over a distance of the order of the wavelength, so that 
effectively all higher-order gradients of the field will contribute. Thus the electric dipole 
transition probability becomes finite, for any multipole wave. As an example, consider an 
electric quadrupole wave with j = 2 and projection m = 2. If an atom makes an electric 
dipole transition, then the selection rules for the internal variables are not changed 

61 = f l  6m = -1,O. 1. (22) 

Thus the atom absorbs only one unit of angular momentum, although the photon contains 
two units. The deficit is accounted for by the external angular momentum of the atom. For 
instance, the spherical components of A are proportional to 

(Az + iA,) c( exp(3i4) A, CY exp(2i4) (A, - iA,) c( exp(i4) (23) 

so that the selection rules for external quantum number M are 

6M = 3.2, 1 (24) 

such that 6m + 6M = 2. The quantum number J for the length of the total angular 
momentum &a = Ant + Jat, changes according to 

S J = f 2  (3) 

which expresses angular momentum conservation. For L, the eigenvalue pertaining to J& 
the selection rules are less strict and follow from the familiar triangle and parity rules 

L+I > J > IL -11 L’ f l ’  > J’ > lL’-l’l (26) 

and 6L =‘L‘ - L is odd. 
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4.2. Electric quadrupole transitions 

The innsition probability for electric quadrupole transitions is determined by the square of 
the matrix elements 

The main conclusions from the preceding subsection can, mutatis mutandis, be canied over 
to this case. For instance, in a field where the quadrupole tensor vanishes in the origin, 
the probability of making an electric quadrupole transition is negligble, unless the atom is 
very cold. As an explicit example we consider a circularly polarized Bessel beam (or a 
Laguerre4aussian beam) propagating in the positive z direction, such that kz M k, with 
L, = 0 and S, = R. From (2) one sees that there is only one non-vanishing component of 
the field: 

4 - iFy = &f(kt, kz, 0) (28) 

where kt << kz. Suppose an atom absorbs a photon from this beam by making an electric 
quadrupole transition. Since only one spherical component (28) of the field is non-vanishing, 
one is left with a reduced set of quadrupole selection rules 

Sm = 0.1.2 

for the projections of internal angular momentum on the z axis. From the explicit spatial 
dependence of (28) one gets the following selection rules for the external angular momentum, 

SM=l,O,-l  (30) 

respectively, such that 6m + 6M = 1. Therefore, the magnetic quantum number m can 
change by 2 units of angular momentum, even though the field possesses only one unit of 
spin. The second unit does not come from orbital angular momentum of the photon, since 
L, = 0. Rather the external motion of the atom loses one unit of angular momentum in 
that case: SM = -1. For completeness we note that in a wave with L, = mR and S, =TI ,  
the selection rule for Sm is not affected, while for SM one has now 

SM = m +  1 , m , m  - 1 (31) 

respectively. The extra amount of orbital angular momentum of the photon is thus always 
transferred to the centreof-mass motion of the atom. The same conclusion holds for dipole 
transitions [17]. Similarly, in an electric dipole wave with j = 1, the quadrupole transition 
matrix elements lead to the rules 

SE = i f2  (32) 

even though the field possesses only one unit angular momentum. Again, the other unit 
comes from the external motion of the atom, not from orbital angular momentum of light. 
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5. Discussion and conclusions 

If one assumes the centre of mass of an atom to be at rest at a given point, the selection 
rules for one-photon transitions express angular momentum and parity conservation: as is 
well known [12], an electric or magnetic 21 transition with 81 = j is allowed if and only if 
the emitted or absorbed photon has total angular momentum j, and parity (-1)j or (-l)j+', 
respectively. 

When the external motion of the atom is included, things are different: a multipole 
transition is possible also in fields with lower angular momentum. In particular, we showed 
that a quadrupole transition with 61 = -12 and 6m = 52 is allowed both in a field with 
total angular momentum j = 1, and in a field with vanishing orbital angular momentum 
L, = 0, and spin S, = -11. Conversely, a multipole transition is also allowed in a field with 
higher angular momentum: for instance, an atom may emit a quadrupole photon in a dipole 
transition. In all these cases there is no violation of conservation of angular momentum or 
parity, since the external motion can absorb angular momentum and since the parity of the 
external wavefunction can change sign. 

These changes originate from the fact that the external centre-of-mass position R must 
be considered a dynamical variable. Consequently, both the transition probability and the 
selection rules depend on the explicit spatial dependence of the field. The internal selection 
rules, on the other hand, are independent of the mode stlllcture, and do not depend on the 
inclusion of external atomic motion, quantized or classical. 

When is it relevant to include the centre-of-mass motion? If the atom, is cooled to low 
temperatures, then the angular momentum transfer, i.e. the torque, of one photon is not 
negligible. Thus for a cooled atom one expects to see above-mentioned deviations from 
the usual emission and absorption behaviour. Indeed, one may note that the de Broglie 
wavelength of the atom becomes larger as its temperature becomes lower. Therefore the 
cooled atom Sees a larger part of the field around its centre-of-mass position. Hence, the 
spatial dependence of the field becomes important, and thereby also the orbital angular 
momentum of the field. This part of the field angular momentum is in general absorbed by 
the external motion of the atom, in the sense discussed in section 4. 

This also indicates how an atom can be made to rotate around a given axis. When 
the atom is cooled in a Doppler cooling scheme with two counter-propagating Laguerre- 
Gaussian laser beams with azimuthal index m (i.e. L, = mfi per photon), then at each 
stimulated absorption the atomic external angular momentum changes by mfi. The angular 
momentum will on average not change by spontaneous emissions. The net rate of absorption 
of external angular momentum is then equal to dM/dt = AP.mh, where A is the 
spontaneous decay rate and P. the probability for the atom to be in the excited state. 

Finally, let us note that we discussed only single-photon transitions. Multi-photon 
transitions can, to lowest order, be seen as a sequence of electric dipole transitions, and the 
foregoing conclusions can easily be extended to this case. 

~ ~ 
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Appendix A. Internal and external variables 

We consider an N + 1-particle system, consisting of particles i = 0 . .  . N. Their positions 
and momenta are denoted by T;  and pi. Here we will define internal and external position 
and momentum variables for this system. The intemal variables will be denoted by greek 
symbols, the extemal variables by capital symbols. The intemal position variables pi for 
i = 1 . . . N are chosen relative to the position of particle i = 0, which for an atom would 
be the nucleus. The external position vector R is the centre-of-mass position. Thus we 
define 

for i = 1 . . . N, where M = 
follow from these definitions, and are given by 

pi is the total mass. The canonically conjugate momenta 

These expressions are valid both classically and quantum mechanically, and the quantum 
operators satisfy the canonical commutation relations. Note that if one defines internal 
coordinates with respect to the centre of mass, one has an overcomplete set of internal 
variables. Therefore, these variables have to satisfy a constraint condition, and do not 
satisfy the canonical commutation rules, which, however, does not lead to any difficulties 
1231. 

The inverse relations read 

N 
T o = R -  5°C - T ~ = R + P ~ - C ~  PjPj 

j=1 j=1 

N 
PO Pi PO = -P - 7rj p - -P + Ti. M j=1 l - M  

Finally, the atomic angular momentum can be separated as 

J ~ ~ ~ ,  =ET{ x pi  = R x P+ C p i  x zi 
N N 

= J.*+ ~ i " ~ .  (A4) 
i=O i=l 
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