1. To refresh your memory of complex numbers, let

\[z = 3 + 4i \]
\[w = 2 - i. \]

Find \(z + w \), \(z \cdot w \), and \(z^2 \) by hand, using the fact that \(i^2 = -1 \).

Recall that the absolute value of a complex number is

\[|x + iy| = \sqrt{x^2 + y^2}. \]

Find \(|z| \) and \(|w| \) by hand.

Now do the same calculations in Python, where complex numbers look like \(z = 3 + 4j \) and \(w = 2 - 1j \). The syntax for absolute value is \(\text{abs}(z) \).

2. Let \(c = -.6 + .7i \). Start with \(z = 0 \), and then replace \(z \) with \(z^2 + c \), over and over. Do this in Python and look at the value of \(z \) as you go. Observe that \(z \) bounces around at small values for a little while, and then after about 10 steps starts to blow up really big.

Do the same with \(c = -.3 + .4i \), and observe that \(z \) never blows up, but instead approaches a limit of about \(-.2842 + .2550i\).

You can prove, although it’s kind of tricky, that if you ever get to a \(z \) with \(|z| \geq 2 \), then you’ll escape to infinity.

The Mandelbröt set is the set of complex numbers \(c \) for which the process in problem 2 does not escape to infinity. So \(-.3 + .4i\) is in the Mandelbröt set, and \(-.6 + .7i\) is not. We want to make a picture of this set and explore it. If you have your own idea about how you want to do this, go for it. Or you can follow the outline before.
3. Write a function `escape_time(c)`, which takes a complex number \(c \) and does the following. Start with \(z = 0 \), and then replace \(z \) with \(z^2 + c \) over and over. If at some point you have \(|z| \geq 2 \), return how many steps you’ve done. After 10 steps, just give up and return 10.

What is `escape_time(-.6+.7j)`? Does this agree with what you found in #2? What about `escape_time(-.3+.4i)`?

4. Take your code from last week to draw pictures on a 600 \(\times \) 600 square.

Realize the following pseudo-code:

```python
for x in range(600):
    for y in range(600):
        mathx = [some expression that’s -2 when x=0, and +2 when x=600]
        mathy = [some expression that’s +2 when y=0, and -2 when y=600]
        t = escape_time(mathx + mathy*1j)
        pixels[x,y] = (let the color or intensity vary depending on t)
```

5. Rewrite your code so that it goes up to 50 steps, rather than stopping at 10, to get a crisper picture.

6. Rewrite your code so that rather than being centered at \((0,0)\) and having a width of 4 units, you have variables `centerx` and `centery` and `width` defined before the for loop, and then inside the for loop,

```python
mathx = [some expression that’s centerx - width/2 when x=0, and centerx + width/2 when x=600]
mathy = [some expression that’s centery + width/2 when y=0, and centery - width/2 when y=600]
```

Now set the center to be (-0.909, 0.275), zoom in closer and closer by adjusting `width`, and see what you see. If it starts to get blurry, increase the maximum number of steps from 50 to 100 or 200 or 300.

7. Do the same with the following centers:

\((-0.761574, -0.0847596)\)

\((0.001643721971153, -0.822467633298876)\)

\((-0.743643887037158704752191506114774, 0.1318259042053119704931320385139)\)
8. Optional: if you have time to kill, or need even more psychedelic paisley in your life. Instead of always starting from $z = 0$ and looking at what happens as we iterate $z \mapsto z^2 + c$ for various complex numbers c, we can fix a value of c and let the starting value of z vary. The set of initial z’s for which this does not escape to infinity is called a Julia set. By definition, 0 is in the Julia set with parameter c if and only if c is in the Mandelbröt set; interestingly, the Julia set is connected if c is in the Mandelbröt set, and disconnected if it is not.

Have the computer plot the Julia sets for several values of c, including the four that we explored above. Observe that the swirliness of the Julia set for c reflects the swirliness of the Mandelbröt set near c.