1. Write a function \(\text{gcd}(a, b) \) to compute the greatest common divisor of two integers \(a \) and \(b \), following the \textit{Euclidean algorithm} that we discussed in class:

(a) If \(a < b \), switch them so that \(a \geq b \).

(b) Compute \(r = a \mod b \).

(c) If \(r = 0 \) then \(b \) divides \(a \), so return \(b \).

(d) Otherwise, replace \(a \) with \(b \) and \(b \) with \(r \), and keep going.

Check that your function gives the right answer for various choices of \(a \) and \(b \).

2. Fermat’s little theorem states that if \(p \) is prime and \(a \) is an integer not divisible by \(p \), then

\[
a^{p-1} \equiv 1 \pmod{p}.
\]

We will discuss the proof on Wednesday, but for now:

(a) Search online for a list of 3- or 4-digit primes, and do a little experiment to satisfy yourself that this is true.

(b) Satisfy yourself that it is not true when \(p \) is not prime.

(c) You may find that when your numbers get big, it’s slow to compute \(x^{**} \mod z \). Rewrite your code using the Python function \texttt{pow(x,y,z)}, which does the same thing much faster.
3. This is a warm-up for RSA encryption.

(a) Choose a 3-digit prime number p and a 4-digit prime number q, and let $n = pq$ and $k = (p - 1)(q - 1)$. Choose a small number e such that $\gcd(e, k) = 1$, and write some code to find a number d such that

$$de \equiv 1 \pmod{k}.$$

(b) Let $m = 1234$, where m stands for message. Find c, which stands for ciphertext, such that $c \equiv m^d \pmod{n}$.

(c) The original message should satisfy $m \equiv c^e \pmod{n}$. Check that this is true, and if it’s not then find and correct your mistake.

4. Choose a partner with whom to exchange secret messages.

(a) Write a short secret message. Break it into blocks of 3 letters, and encode each one as a 6-digit number using the code

\[
\begin{align*}
A &= 01 & B &= 02 & C &= 03 & D &= 04 & E &= 05 & F &= 06 & G &= 07 \\
H &= 08 & I &= 09 & J &= 10 & K &= 11 & L &= 12 & M &= 13 & N &= 14 \\
O &= 15 & P &= 16 & Q &= 17 & R &= 18 & S &= 19 & T &= 20 & U &= 21 \\
V &= 22 & W &= 23 & X &= 24 & Y &= 25 & Z &= 26 & \text{period} &= 27 \\
& & & & & & \text{space} &= 00.
\end{align*}
\]

You could write a function to encode and decode messages, or you could do it by hand.

(b) Encrypt your 6-digit numbers using $c \equiv m^d \pmod{n}$. Send an email to your colleague containing n and e (your “public key”) and the sequence of 6- or 7-digit numbers c. But do not send p, q, k, or d (your “private key”), nor the unencrypted messages m.

(c) Have your partner decrypt the message using $m \equiv c^e \pmod{n}$, and decode it using the code above.

(d) Have your partner write a secret message in reply, encode it as sequence of 6-digit numbers, and encrypt it using your public key: that is, $c \equiv m^e \pmod{n}$. Have them send it to you, and decrypt it using your private key: $m \equiv c^d \pmod{n}$. Then decode it and see what they said.

(To that the roles of d and e are switched in this last part. Your partner still doesn’t know your private key.)
5. Do it again with a 6-digit prime for p and a 7-digit prime for q. Probably there is a bottleneck around computing d. Next week we’ll discuss a faster way to compute d, using the extended Euclidean algorithm. If you get to this problem before then, either think about a clever way to find d, or go read about that algorithm.

For real-life encryption, like sending your credit card number to a website, we use primes that are hundreds of digits long. Can your code handle primes that big?