Worksheet 5

Math 206

Monday, October 23, 2023

Write down your group members' names and email addresses. Do they have any pets?

Given a function f that takes integers as input and returns integers, or rational numbers, or real numbers or whatever as output, let's define

$$
\nabla f(n)=f(n)-f(n-1)
$$

That's an upside-down delta, for "difference." The TEX command is \nabla.
If $f(n)=n^{2}$, find ∇f. Do the same for $f(n)=n^{3}$.
Convince yourselves that if you have two functions f and g with $f(0)=$ $g(0)$ and $\nabla f(n)=\nabla g(n)$ for all n, then $f(n)=g(n)$ for all n.

Last week we studied the binomial coefficients

$$
\binom{n}{k}=\frac{n \cdot(n-1) \cdot(n-2) \cdots(n-k+1)}{k \cdot(k-1) \cdot(k-2) \cdots 1}
$$

and saw that

$$
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}
$$

Can we use this to find $\nabla f(n)$ if $f(n)=\binom{n}{3}$? What if $f(n)=\binom{n}{4}$?

Going the other way, suppose we want to find a function f with

$$
\nabla f(n)=3\binom{n}{4}+9\binom{n}{3}+10\binom{n}{2}+5\binom{n}{1}+\binom{n}{0} .
$$

How can we do it without working hard? What if we also require that $f(0)=7$?

Let

$$
f(n)=0+1+2+\cdots+n,
$$

and let

$$
g(n)=\binom{n+1}{2}
$$

Convince yourselves that $f(0)=g(0)$, and $\nabla f=\nabla g$, so $f=g$.
We've seen that $\binom{n}{0}=1$ for all n, and $\binom{n}{1}=n$. Expand out $\binom{n}{2}$ as a polynomial in n. Can you write n^{2} in terms of $\binom{n}{2}$ and $\binom{n}{1}$ and $\binom{n}{0}$?

Let

$$
f(n)=0^{2}+1^{2}+\cdots+n^{2} .
$$

Find $\nabla f(n)$. Can you find a function $g(n)$, built from binomial coefficients, with $\nabla g=\nabla f$ and $g(0)=f(0)$? Does it agree with what you've found in past weeks?

Keep going with

$$
f(n)=0^{3}+1^{3}+\cdots+n^{3}
$$

and

$$
f(n)=0^{4}+1^{4}+\cdots+n^{4}
$$

and so on.
If you have time to kill, consider the following. If f is a polynomial of degree d, then ∇f is a polynomial of degree $d-1$, and $\nabla^{2} f=\nabla \nabla f$ is a polynomial of degree $d-2$, and so on, until

$$
\nabla^{d} f=\overbrace{\nabla \nabla \cdots \nabla}^{d \text { times }} f
$$

is a constant function. In the write-ups, some of you have been using the converse: if $\nabla^{d} f$ is a constant function, then f is a polynomial of degree $\leq d$. Can you use the ideas we've explored this week to explain why this is true?

