Worksheet 7 (revised)

Math 206
Monday, November 6, 2023

Last week, by staring deeply into the formulas for $1^{p}+2^{p}+\cdots+n^{p}$ for p from 1 up to 14, we discovered Faulhaber's formula:

$$
\begin{aligned}
& \frac{1}{p+1} n^{p+1}+\frac{1}{2} n^{p}+\frac{p}{12} n^{p-1}-\frac{1}{120}\binom{p}{3} n^{p-3}+\frac{1}{252}\binom{p}{5} n^{p-5} \\
& -\frac{1}{240}\binom{p}{7} n^{p-7}+\frac{1}{132}\binom{p}{9} n^{p-9}-\frac{691}{32760}\binom{p}{11} n^{p-11}+\frac{1}{12}\binom{p}{13} n^{p-13}-\cdots \\
& \quad \pm \text { stop at } n \text { or } n^{2} .
\end{aligned}
$$

But the numbers $\frac{1}{12}, \frac{1}{120}, \frac{1}{252}$, and so on seemed to come out of nowhere, especially $\frac{691}{32760}$.

We won't get a deeply satisfying explanation for these numbers, but over the next two weeks we'll organize them into something called a generating function, which will make them feel a little less random.

To get a feeling for generating functions, let's start with the expression

$$
y=1+x+x^{2}+x^{3}+x^{4}+\cdots
$$

We're just going to manipulate this formally, not worry about questions of convergence or try to evaluate it at particular values of x. Convince yourselves that

$$
y=1+x \cdot y
$$

Solve for y to see that (at least in a formal sense) we have $y=\frac{1}{1-x}$.
Next consider

$$
\begin{equation*}
z=1+2 x+3 x^{2}+4 x^{3}+5 x^{4}+\cdots \tag{*}
\end{equation*}
$$

Convince yourselves that

$$
z-x z=1+x+x^{2}+x^{3}+x^{4}+\cdots
$$

Re-write the right-hand side as $\frac{1}{1-x}$ and solve for z.

To understand $(*)$ another way, take

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+\cdots
$$

and square both sides. Squaring the right-hand side will require some careful bookkeeping.

To understand $(*)$ a third way, take

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+\cdots
$$

and take the derivative of both sides.
Next, find similar expression for $\frac{1}{(1-x)^{3}}$. You could either multiply your expressions for $\frac{1}{1-x}$ and $\frac{1}{(1-x)^{2}}$, or you could take the derivative of $\frac{1}{(1-x)^{2}}$. Do you notice a connection to Pascal's triangle? What do you guess will happen with $\frac{1}{(1-x)^{4}}$?

Given any sequence of numbers, we can make a formal power series called a generating function that has those numbers as coefficients, and we can hope to write it in a nice compact form. For example, we could take the Fibonacci numbers

$$
1,1,2,3,5,8,13,21,34,55,89,144 \ldots,
$$

which are defined by the fact that one is the sum of the previous two, and organize them into a generating function:

$$
w=1+x+2 x^{2}+3 x^{3}+5 x^{4}+8 x^{5}+13 x^{6}+\cdots
$$

Convince yourselves that $w=1+x w+x^{2} w$. Solve for w.
Knowing that $\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots$, we can write

$$
\frac{1}{1-x-x^{2}}=\frac{1}{1-\left(x+x^{2}\right)}=1+\left(x+x^{2}\right)+\left(x+x^{2}\right)^{2}+\left(x+x^{2}\right)^{3}+\cdots
$$

On the right-hand side, use the binomial theorem to exand $\left(x+x^{2}\right)^{2}$ and $\left(x+x^{2}\right)^{3}$ and so on - maybe go up through $\left(x+x^{2}\right)^{5}$. This gives a connection between the Fibonacci numbers and Pascal's triangle; what is it?

If you've taken math 253 , you've seen that

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\cdots
$$

If you haven't seen this before, you can at least convince yourself that both sides satify $f^{\prime}(x)=f(x)$ and $f(0)=1$.

Building on this formula for e^{x}, convince yourselves that

$$
1+\frac{x}{2!}+\frac{x^{2}}{3!}+\frac{x^{3}}{4!}+\frac{x^{4}}{5!}+\cdots=\frac{e^{x}-1}{x}
$$

In principle then, we can find similar expression for $\frac{x}{e^{x}-1}$ by writing

$$
\frac{x}{e^{x}-1}=\frac{1}{1+\frac{x}{2!}+\frac{x^{2}}{3!}+\frac{x^{3}}{4!}+\frac{x^{4}}{5!}+\cdots}=\frac{1}{1+\left(\frac{x}{2!}+\frac{x^{2}}{3!}+\frac{x^{3}}{4!}+\frac{x^{4}}{5!}+\cdots\right)}
$$

and expanding that as

$$
\begin{aligned}
1-\left(\frac{x}{2!}+\frac{x^{2}}{3!}+\frac{x^{3}}{4!}+\right. & \left.\frac{x^{4}}{5!}+\cdots\right) \\
& +\left(\frac{x}{2!}+\frac{x^{2}}{3!}+\frac{x^{3}}{4!}+\frac{x^{4}}{5!}+\cdots\right)^{2} \\
& -\left(\frac{x}{2!}+\frac{x^{2}}{3!}+\frac{x^{3}}{4!}+\frac{x^{4}}{5!}+\cdots\right)^{3}+\cdots
\end{aligned}
$$

Multiply this out till you get tired, then ask Wolfram Alpha for "power series for $\mathrm{x} /\left(\mathrm{e}^{\wedge} \mathrm{x}-1\right)$ to order 20 " and check your work. Notice that the coefficient of x^{12} involves 691, which suggests a connection to Faulhaber's formula. We'll dig deeper into this next week.

