Solutions to Midterm 2

You may use a page of notes. Each part is worth 3 points.

1. (a) Based on §6.1 #8. Sketch the region bounded the line y=x+4 and the parabola $y=x^2-2x$.

Solution:

(b) Find the two points where the line and the parabola intersect. Solution:

$$x^{2} - 2x = x + 4$$

$$x^{2} - 3x - 4 = 0$$

$$(x - 4)(x + 1) = 0$$

$$x = -1 \text{ or } 4.$$

Thus the points are (-1,3) and (4,8).

(c) Set up an integral to find the area of the region. Do not evaluate the integral.

Solution:

$$\int_{-1}^{4} \left((x+4) - (x^2 - 2x) \right) dx = \int_{-1}^{4} \left(4 + 3x - x^2 \right) dx.$$

(d) The perimeter of the region consists of a line segment and a segment of a parabola. The length of the line segment is $5\sqrt{2}$: this doesn't require any calculus. Set up the integral to find the length of the parabolic segment. Do not evaluate the integral.

Solution: The parabola is $y = x^2 - 2x$, so y' = 2x - 2, so the arc length is

$$\int_{x=-1}^{x=4} \sqrt{1 + (2x-2)^2} \, dx = \int_{-1}^{4} \sqrt{4x^2 - 8x + 5} \, dx.$$

(e) If you had evaluated the integral from part (c), you would have gotten 125/6. Set up an integral to find the x-coordinate of the center of mass of the region. Do not evaluate the integral.

Solution:

$$\frac{\int_{-1}^{1} x(4+3x-x^2) \, dx}{125/6}.$$

(f) Extra credit: Set up an integral to find the y-coordinate of the center of mass of the region. Do not evaluate the integral. Hint: If $y = x^2 - 2x$ then $x = 1 \pm \sqrt{y+1}$.

Solution: We need to treat portion of the region below the line y=3 differently from the portion above.

$$\frac{\int_{-1}^{3} y \left(\left(1 + \sqrt{y+1}\right) - \left(1 - \sqrt{y+1}\right) \right) \, dy + \int_{3}^{8} y \left(\left(1 + \sqrt{y+1}\right) - \left(y-4\right) \right) \, dy}{125/6}.$$

- 2. On the board you see a sketch of the region that lies above the line y = 1 and inside the circle $x^2 + y^2 = 2$.
 - (a) Roughly sketch the solid obtained by revolving the region around the x-axis.

Solution: It's a naple in ring

(b) Set up the integral to find the volume of the solid from part (a) using disks/washers. Hint: The top half of the circle can be described as $y = \sqrt{2 - x^2}$.

Solution:

$$\int_{-1}^{1} \left(\pi \left(\sqrt{2 - x^2} \right)^2 - \pi \cdot 1^2 \right) dx = \int_{-1}^{1} \pi \left(1 - x^2 \right) dx,$$
 or
$$2 \int_{0}^{1} \text{(same thing) } dx.$$

(c) Evaluate the integral from part (b).

$$2\pi \int_0^1 (1-x^2) \ dx = 2\pi \left[x - \frac{1}{3}x^3 \right]_0^1 = \frac{4}{3}\pi.$$

(d) Set up the integral to find the volume of the solid from part (a) using cylindrical shells. Hint: The right half of the circle can be described as $x = \sqrt{2 - y^2}$.

Solution:

$$\int_{1}^{\sqrt{2}} 2\pi y \cdot 2\sqrt{2 - y^2} \, dy.$$

The factor of 2 in front of the square root is because the horizontal slices extend from the left side of the circle to the right side, not just from the y-axis to the right side.

(e) Evaluate the integral in part (d). This should agree with your answer to part (c). Hint: Substitute $u = 2 - y^2$.

Solution: Following the hint, we let $u = 2 - y^2$, so du = -2y dx.

$$\int_{y=1}^{y=\sqrt{2}} 4\pi y \sqrt{2 - y^2} \, dy = \int_{u=1}^{u=0} -2\pi \sqrt{u} \, du$$
$$= \int_0^1 2\pi u^{1/2} \, du$$
$$= 2\pi \left[\frac{2}{3} u^{3/2} \right]_0^1$$
$$= \frac{4}{3}\pi.$$

(f) Roughly sketch the solid obtained by revolving the region around the y-axis.

Solution:

(g) Set up the integral to find the volume of the solid from part (f) solid using cylindrical shells. Hint: The top half of the circle can be described as $y = \sqrt{2 - x^2}$.

Solution:

$$\int_0^1 2\pi x \left(\sqrt{2-x^2}-1\right) dx$$

(h) Evaluate the integral from part (g). Hints: Substitute $u=2-x^2$. Recall that $2^{3/2}=2^1\cdot 2^{1/2}=2\sqrt{2}$.

Solution: Following the hint, we let $u = 2 - x^2$, so du = -2x dx.

$$\int_{x=0}^{x=1} 2\pi x \left(\sqrt{2-x^2} - 1\right) dx = \int_{u=2}^{u=1} -\pi \left(\sqrt{u} - 1\right) du$$

$$= \int_{1}^{2} \pi \left(u^{1/2} - 1\right) du$$

$$= \pi \left[\frac{2}{3}u^{3/2} - u\right]_{1}^{2}$$

$$= \pi \left(\frac{2}{3} \cdot 2\sqrt{2} - 2 - \frac{2}{3} + 1\right)$$

$$= \frac{4\sqrt{2}}{3}\pi - \frac{5}{3}\pi.$$

(i) Set up the integral to find the volume of the solid from part (f) using disks. Hint: The right half of the circle can be described as $x = \sqrt{2 - y^2}$.

Solution:

$$\int_{1}^{\sqrt{2}} \pi \left(\sqrt{2-y^2}\right)^2 dy$$

(j) Evaluate the integral in part (i). This should agree with your answer to part (h). Hint: Recall that $(\sqrt{2})^3 = \sqrt{2} \cdot \sqrt{2} \cdot \sqrt{2} = 2\sqrt{2}$. Solution:

$$\int_{1}^{\sqrt{2}} \pi \left(2 - y^{2}\right) dy = \pi \left[2y - \frac{1}{3}y^{3}\right]_{1}^{\sqrt{2}}$$

$$= \pi \left(2\sqrt{2} - \frac{1}{3} \cdot 2\sqrt{2} - 2 + \frac{1}{3}\right)$$

$$= \frac{4\sqrt{2}}{3}\pi - \frac{5}{3}\pi.$$

(k) Extra credit: Explain (geometrically) why your answer to part (c) or (e), plus twice your answer to part (h) or (j), plus 2π , should equal $\frac{4}{3}\pi(\sqrt{2})^3 = \frac{8\sqrt{2}}{3}\pi$. Check that your answers satisfy this.

Solution: We can decompose the sphere of radius $\sqrt{2}$ into two "caps," a "napkin ring," and a cylinder of radius 1 and height 2, hence of volume 2π . And indeed we have

$$\frac{4}{3}\pi + \frac{8\sqrt{2}}{3}\pi - \frac{10}{3}\pi + 2\pi = \frac{8\sqrt{2}}{3}\pi.$$