1. The function $\text{Si}(x) = \int_0^x \frac{\sin t}{t} \, dt$, called the sine integral, has applications to signal processing.

 a) Try to evaluate this integral in the usual way, by making a u-substitution, integrating by parts, or whatever you can think of. Explain what you tried and where you got stuck. If you think you’ve succeeded, double-check by taking the derivative of your answer.

 b) We have seen that the Taylor series for $\sin(t)$ is

 $$t - \frac{t^3}{3!} + \frac{t^5}{5!} - \frac{t^7}{7!} + \cdots$$

 Divide by t and integrate from 0 to x to get the Taylor series for $\text{Si}(x)$.

 c) Use this to get an approximate value for $\text{Si}(1)$. The true value is $0.946083070367183\ldots$

2. Approximating π. In lecture we took the geometric series $\frac{1}{1-r} = 1 + r + r^2 + r^3 + \cdots$, substituted $r = -x^2$ to get

 $$\frac{1}{1+x^2} = 1 - x^2 + x^4 - x^6 + \cdots$$

 and integrated to get the Taylor series for arctangent:

 $$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$$

 Then we noticed that $\tan \frac{\pi}{4} = 1$, so we plugged in $x=1$ and multiplied by 4 to get an approximation to π. But the series converged very slowly: after 100 terms we only had π to one decimal place.

 We also noticed that $\tan \frac{\pi}{6} = \frac{1}{\sqrt{3}}$ and wondered if this would yield a better approximation to π. Use a calculator to plug $x = \frac{1}{\sqrt{3}}$ into the Taylor series for arctangent above, carry it out to 4 terms and then 5 terms, and multiply by 6. How good an approximation do you get to $\pi = 3.14159265358989323846\ldots$?

(Continued on the next page.)
3. This problem asks you to solve the differential equation $y' = -2ty$ using power series.

a) Suppose that $y = c_0 + c_1t + c_2t^2 + c_3t^3 + c_4t^4 + c_5t^5 + c_6t^6 + \cdots$
 Find y' and $-2ty$.

b) By equating the constant terms, then the coefficients of t, then the coefficients of t^2 and so on, solve for c_1, c_2, c_3 and so on in terms of c_0.

c) Take what you found in part (b) and write out the power series for y that solves the differential equation.

d) By know you know the Taylor series for e^x:

 $$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$$

 Substitute $x = -t^2$ and notice that your answer to part (c) is $c_0 e^{-t^2}$. Check that this satisfies $y' = -2ty$.

4. “Bessel functions” appear often in applied mathematics and physics, especially in analyzing the vibration of bells, cymbals, and drums. The Bessel function of order 0 is a solution to the differential equation $ty'' + y' + ty = 0$.

a) Suppose that $y = c_0 + c_1t + c_2t^2 + c_3t^3 + c_4t^4 + c_5t^5 + c_6t^6 + \cdots$
 Find ty, y', and ty''.

b) Add them up to get $ty'' + y' + ty$, grouping together the constant terms, the terms involving t, the terms involving t^2, and so on; stop at t^5.

c) Setting your answer to part (b) equal to zero determines the coefficients c_1, c_2, c_3 and so on in terms of c_0. Set the constant term equal to zero and solve for c_1. Set the the coefficient of t equal to zero and solve for c_2 in terms of c_0. Keep going up to t^5, which determines c_6.

d) Suppose that $y(t)$ satisfies the differential equation $ty'' + y' + ty = 0$ and the initial condition $y(0) = 1$ (which determines c_0). Write out the sixth Taylor polynomial of $y(t)$. Give an approximation to $y(1)$.