1. (10 points) Does \(\sum_{n=1}^{\infty} \frac{|n!|^3}{|3n|!} \) converge or diverge, and why?
2. (10 points) For what values of x does the series $\sum_{n=1}^{\infty} \frac{x^n}{2n^3}$ converge?
Here is the form of Taylor’s theorem that we proved and have been using. Fix some \(x > 0 \), and suppose we find some \(M \) such that \(|f^{d+1}(t)| \leq M \) for all \(t \) between 0 and \(x \). Then the difference between \(f(x) \) and the \(d \)th Taylor polynomial

\[
f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(d)}(0)}{d!}x^d
\]

is at most \(\frac{Mx^{d+1}}{d!} \).

3. On the last midterm you computed several derivatives of \(f(x) = \sin(2x) + \cos(x) \):

\[
\begin{align*}
f'(x) &= 2\cos(2x) - \sin(x) \\
f''(x) &= -4\sin(2x) - \cos(x) \\
f'''(x) &= -8\cos(2x) + \sin(x)
\end{align*}
\]

Then you found that the third Taylor polynomial was \(1 + 2x - \frac{1}{2}x^2 - \frac{4}{3}x^3 \).

a) (5 points) Use a calculator to evaluate the third Taylor polynomial at \(x = 0.1 \).

b) (5 points) Because \(\sin t \) and \(\cos t \) stay between \(-1 \) and 1 for all \(t \), we see that the first term of \(f^{d+1}(t) \) stays between \(-2^{d+1} \) and \(2^{d+1} \), and the second term stays between \(-1 \) and 1; so which of the following is a good choice for the \(M \) that appears in Taylor’s theorem?

(i) 1 (ii) \(2^{d+1} \) (iii) \(2^{d+1} + 1 \) (iv) \(2^{d+1} - 1 \) (v) \(2^{d+1} + 1 \) (vi) 2 (vii) \(-1 \)

c) (5 points) So Taylor’s theorem as stated above says that the number you found in part (a) is at most how far from the true value of \(f(0.1) \)?

d) (5 points) Take your answer to part (a) plus your answer to part (c), and then your answer to part (a) minus your answer to part (c), to get upper and lower estimates for \(f(0.1) \).

e) (5 points) Use a calculator to get a more exact value for \(f(0.1) = \sin(0.2) + \cos(0.1) \). (Make sure you’re working in radians!) If this isn’t in the range that you found in part (d), go back and fix any mistakes.
4. The point of this problem is to approximate \[\int_{0}^{1} \frac{e^x - 1}{x} \, dx \], which cannot be found by the methods of math 252.

a) (5 points) We have seen that the Taylor series for \(e^x \) is
\[1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots \].
Manipulate this to get the Taylor series for \(\frac{e^x - 1}{x} \).

b) (5 points) Use your answer to part (a) to find
\[\int_{0}^{1} \frac{e^x - 1}{x} \, dx \].
(Your answer will be a series of numbers, not a power series.)

c) (5 points) Use a calculator to get an approximate value for the series in part (b). The true value is 1.3179021514544…; if your answer is far from this, go back and fix any mistakes.
5. This problem asks you to solve the differential equation $y'' = -ty$ using power series.

a) (5 points) Suppose that $y = c_0 + c_1 t + c_2 t^2 + c_3 t^3 + c_4 t^4 + c_5 t^5 + c_6 t^6 + \cdots$.

Find $-ty$, y', and y''.

(Continued on the next page.)
b) (5 points) By equating the constant terms of y'' and $-ty$, then the coefficients of t, then the coefficients of t^2 and so on, solve for c_2, c_3, and so on up to c_6 in terms of c_0 and c_1.

c) (5 points) Write out the sixth Taylor polynomial of the particular solution that satisfies the initial conditions $y(0) = 1$ and $y'(0) = -1$.
(The point is that these initial conditions determine c_0 and c_1, which determine the rest.)