In lecture we saw how to find the roots of a cubic polynomial
\[x^3 + bx^2 + cx + d. \]

- Eliminate the quadratic term: substitute \(x = z - \frac{b}{3} \) to get a “depressed cubic” of the form
 \[z^3 + pz + q. \]
- Viète’s trick: substitute \(z = v - \frac{p}{3v} \), then multiply through by \(v^3 \) to get a quadratic in \(v^3 \).
- Find \(v^3 \) either by factoring the quadratic or by using the quadratic formula, then take cube roots to get \(v \).
 (This is why we spent so much time taking cube roots earlier.)
- Substitute back to get \(z \) and then \(x \).

Get started on §2.4 #6, which will be on the next homework.

6. Solve the following cubic equations:

 (a) \(z^3 - 9z - 28 = 0 \). (Answer: 4, \(-2 \pm \sqrt{3}i\).)
 (b) \(x^3 - 9x^2 + 9x - 8 = 0 \). (Answer: 8, \(\frac{1 \pm \sqrt{3}i}{2} \).)
 (c) \(z^3 - 3z - 1 = 0 \). (Answer: \(2 \cos 20^\circ, 2 \cos 140^\circ, 2 \cos 260^\circ \).)