In $\mathbb{Q}[x]$ and $\mathbb{Z}_p[x]$, irreducible polynomials can have very high degree, but in $\mathbb{R}[x]$ the picture is much simpler: irreducible polynomials are either linear, or quadratic with no real roots. Discuss the following outline of a proof, and convince yourselves that it’s correct.

1. Let
 \[f = c_nx^n + \cdots + c_2x^2 + c_1x + c_0 \]
 be a non-constant polynomial with real coefficients, and let $z = a + bi$ be a complex number. Recall that the complex conjugate \bar{z} is defined to be $a - bi$.
 Prove that $f(\bar{z}) = \bar{f(z)}$. (Hint: You’ll want to know that $\bar{z + w} = \bar{z} + \bar{w}$ and $\bar{z \cdot w} = \bar{z} \cdot \bar{w}$.)
 In particular, if z is a root of f then \bar{z} is also a root of f.

2. If $f \in \mathbb{R}[x]$ is not constant, then it has a root $a + bi \in \mathbb{C}$ by the fundamental theorem of algebra.
 If $b = 0$ then $x - a$ divides f.
 If $b \neq 0$ then $x - (a + bi)$ divides f, and $x - (a - bi)$ divides f, so
 \[(x - (a + bi))(x - (a - bi)) = x^2 - 2ax + a^2 + b^2 \]
 divides f.

3. So irreducible polynomials in $\mathbb{R}[x]$ are either linear, or quadratic with no real roots. (Is this clear from #2, or does it need some explanation?)