Worksheet: Dihedral groups

\[D_5 \text{ = symms. of a pentagon} \]

\[r = \text{rotation} \]

\[r^5 = 1 \]

\[s = \text{reflection} \]

\[s^2 = 1 \]

\[rs = sr^{-1} = sr^{-1} \]

\[r^3 s = r rs = rs r^{-1} = s r^{-1} r^{-1} = sr^2 = s \]

\[r^3 s = sr^{-3} = sr^2 \]

\[r^4 s = sr^{-4} = sr \]

Typical of dihedral groups:

\[D_n = \left\{ 1, r, r^2, \ldots, r^{n-1} \right\} \quad r^n = 1 \]

\[s, sr, sr^2, \ldots, sr^{n-1} \]

\[rs = sr^{-1} \]

==

Group Actions

Def. A left action of a group \(G \) on a set \(X \)

is a map \(G \times X \rightarrow X \)

\[(g, x) \mapsto g \cdot x \]

such that

1. \(g \cdot (h \cdot x) = (g \cdot h) \cdot x \quad \text{for all } g, h \in G \)
2. \(1 \cdot x = x \)
Could also do right actions...

Examples:

1A. \(G = \text{rotation of a cube} \), \(X = \{ \text{the 6 faces of the cube} \} \)

If \(g \) is some rotation and \(x \) is some face, then \(g \cdot x = \) where that face ends up.

1B. \(G = \text{same} \)

\(X = \{ \text{the 8 vertices} \} \)

1C. \(G = \text{same} \)

\(X = \{ \text{the 12 edges} \} \)

2A. \(G = \text{D}_4 \), \(X = \{ \text{vertices of a square} \} \)

\(r \cdot (1) = 2 \)

\(r^2 \cdot (1) = 3 \)

\(s_r \cdot (1) = s \cdot (r \cdot (1)) = s \cdot 2 = 1 \)

orbit of \(1 \) is \(\{ 1, 2, 3, 4 \} \)

2B. \(G = \text{D}_4 \), \(X = \{ \text{edges of a square} \} \)

\(r \cdot a = b \)

\(r^2 \cdot a = c \)

\(s_r \cdot a = a \quad \text{or} \quad s_r \cdot a = s \cdot (r \cdot a) = s \cdot b = d \)

orbit of \(a \) is \(\{ a, b, c, d \} \)

orbit of \(a \) is \(\{ 1, 5 \} \)
\(G = (\mathbb{R}_+^1, +) \)

\[X = \mathbb{C} \]

for \(t \in \mathbb{R}, \quad z \in \mathbb{C} \), define

\[t \cdot z = e^{it}z \]

\(t \) rotates \(\mathbb{C} \) by that many radians clockwise.

satisfies the 2 axioms for an action.

for \(s, t \in \mathbb{R} \) and \(z \in \mathbb{C} \)

\[s \cdot (t \cdot z) = s \cdot (e^{it}z) = e^{is}e^{it}z \]

\[= e^{i(s+t)}z = (s+t) \cdot z \]

\[0 \cdot z = e^{i0}z = 1z = z \]

if you prefer \((x,y) \in \mathbb{R}^2 \) rather than \(z = x + iy \in \mathbb{C} \),
could write \(t \cdot (x,y) = (\cos t \cdot x - \sin t \cdot y, \sin t \cdot x + \cos t \cdot y) \)

use angle addition formulas to

see that \(s \cdot (t \cdot (x,y)) = (s+t) \cdot (x,y) \)
still $G = \mathbb{R}$ under addition
\[x = 0 \]

now for $t \in \mathbb{R}$ and $z \in \mathbb{C}$
define $t \cdot z = e^{t} z$

Let a group G act on a set X.

Def. for an element $x \in X$,
the **orbit** of x is
\[O_{x} = \{ g \cdot x \mid g \in G \} \subset X \]

Def. the **stabilizer** of x is
\[G_{x} = \{ g \in G \mid g \cdot x = x \} \subset G \]

Thm: $|O_{x}| \cdot |G_{x}| = |G|$