1. Let $R = \mathbb{Q}[x]$.

 a. Let $I = \langle x^2 \rangle$. For $f, g \in R$, prove that $f \equiv g$ (mod I) if and only if $f(0) = g(0)$ and $f'(0) = g'(0)$.

 Solution: By definition, $f \equiv g$ (mod I) if and only if $f - g \in I$, that is, $f - g$ is a multiple of x^2. If we write

 \[
 f = a_m x^m + \cdots + a_2 x^2 + a_1 x + a_0 \\
 g = b_n x^n + \cdots + b_2 x^2 + b_1 x + b_0,
 \]

 then

 \[
 f - g = \cdots + (a_2 - b_2) x^2 + (a_1 - b_1) x + (a_0 - b_0).
 \]

 This is a multiple of x^2 if and only if the last two coefficients $a_1 - b_1$ and $a_0 - b_0$ are zero, which is true if and only $a_1 = b_1$ and $a_0 = b_0$. And we have

 \[
 f(0) = a_0 \quad f'(0) = 2a_1 \quad g(0) = b_0 \quad g'(0) = 2b_1,
 \]

 so $a_0 = b_0$ if and only if $f(0) = g(0)$, and $a_1 = b_1$ if and only if $f'(0) = g'(0)$.

 b. Let $J = \langle (x-5)^2 \rangle$. For $f, g \in R$, prove that $f \equiv g$ (mod J) if and only if $f(5) = g(5)$ and $f'(5) = g'(5)$.

 Solution: It might be possible to manipulate the coefficients of f and g, like the solution to part (a), but it would be very messy. Here’s a cleaner approach using the root-factor theorem (§3.1 Corollary 1.5).

 First suppose that $f \equiv g$ (mod J), so $f - g \in J$, so we can write

 \[
 f - g = (x - 5)^2 h
 \]

 for some $h \in R$. Plugging in $x = 5$, we find that $f(5) = g(5)$. Taking derivatives, we get

 \[
 f' - g' = 2(x - 5)h + (x - 5)^2 h',
 \]

 and plugging in $x = 5$ again we find that $f'(5) = g'(5)$.

Solutions to Homework 3
Conversely, suppose that \(f(5) = g(5) \); then 5 is a root of \(f - g \), so by the root-factor theorem we can write \(f - g = (x - 5)k \) for some \(k \in \mathbb{R} \). Taking derivatives, we get

\[
f' - g' = k + (x - 5)k',
\]

and plugging in \(x = 5 \) we find that \(k(5) = 0 \), so by the root-factor theorem again we can write \(k = (x - 5)\ell \) for some \(\ell \in \mathbb{R} \). Thus \(f - g = (x - 5)^2\ell \), so \(f - g \in J \), so \(f \equiv g \pmod{J} \).

Yet another approach would be to apply part (a) to the polynomials \(F(x) = f(x + 5) \) and \(G(x) = g(x + 5) \), which satisfy \(F(0) = G(0) \) and \(F'(0) = G'(0) \).

c. Prove that the map \(\phi : \mathbb{R} \to \mathbb{Q} \times \mathbb{Q} \) given by \(\phi(f) = (f(5), f(6)) \) is a surjective homomorphism, and that \(\ker \phi = \langle x^2 - 11x + 30 \rangle \).

Solution: First we show that \(\phi \) is a homomorphism. For \(f, g \in \mathbb{R} \) we have

\[
\phi(f + g) = \left((f + g)(5), (f + g)(6) \right) = \left(f(5) + g(5), f(6) + g(6) \right) = \phi(f) + \phi(g).
\]

Similarly, we find that \(\phi(fg) = \phi(f)\phi(g) \). Finally, \(\phi(1) = (1, 1) \), which is the multiplicative identity in \(\mathbb{Q} \times \mathbb{Q} \).

Next we show that \(\phi \) is surjective. Given some \((a, b) \in \mathbb{Q} \times \mathbb{Q}\), take

\[
f = b(x - 5) - a(x - 6).
\]

Then \(f(5) = a \) and \(f(6) = b \), so \(\phi(f) = (a, b) \).

Last we show that \(\ker \phi = \langle x^2 - 11x + 30 \rangle \). We have \(\phi(x^2 - 11x + 30) = (0, 0) \), so \(x^2 - 11x + 30 \in \ker \phi \), so \(\langle x^2 - 11x + 30 \rangle \subset \ker \phi \) by problem 1 of homework 1. For the reverse inclusion, suppose that \(f \in \ker \phi \), so \(\phi(f) = (0, 0) \), so \(f(5) = 0 \) and \(f(6) = 0 \). By the root-factor theorem, the first implies that \(x - 5 \mid f \), and the second implies that \(x - 6 \mid f \). Because \(\gcd(x - 5, x - 6) = 1 \), these imply that \((x - 5)(x - 6) \mid f \), so \(f \in \langle (x - 5)(x - 6) \rangle \) as desired.

d. Prove that the map \(\psi : \mathbb{R} \to \mathbb{Q} \times \mathbb{Q} \) given by \(\psi(f) = (f(5), f'(5)) \) is not a homomorphism.

Solution: Let \(f = g = x \). Then \(\psi(f) = \psi(g) = (5, 1) \) so \(\psi(f)\psi(g) = (25, 1) \), but \(\psi(fg) = \psi(x^2) = (25, 10) \).

Or you could just say that \(\psi(1) = (1, 0) \neq (1, 1) \).
2. Continued from Worksheet 6: Let $R = \mathbb{Z}[x]$, and let $I = \langle 2, x^2 + 5 \rangle$.

a. Prove that $(x + 1)(x - 1) \in I$.

Solution: We have

$$(x + 1)(x - 1) = x^2 - 1 = (x^2 + 5) - 3 \cdot 2,$$

which is an element of I.

b. Prove that $x + 1 \notin I$, as follows. If $x + 1$ were in I then we could write

$$x + 1 = 2f + (x^2 + 5)g$$

for some $f, g \in R$. Consider the reduction homomorphism $\rho: R \rightarrow \mathbb{Z}_2[x]$ from example 1(d) on page 115, which takes a polynomial $a_n x^n + \cdots + a_0 \in R$ to $a_n x^n + \cdots + a_0 \in \mathbb{Z}_2[x]$. Apply ρ to the displayed equation above to get a contradiction.

(Notice that $\rho(2) = \bar{0}$, so $\rho(2f) = \bar{0}$.)

Solution: Suppose we could write $x + 1 = 2f + (x^2 + 5)g$. Applying ρ to both sides and using the fact that ρ is a homomorphism, we would get

$$\rho(x + 1) = \rho(2)\rho(f) + \rho(x^2 + 5)\rho(g),$$

which becomes

$$x + \bar{1} = (x^2 + \bar{1})\rho(g),$$

so $x^2 + \bar{1}$ would divide $x + \bar{1}$ in $\mathbb{Z}_2[x]$. But this is impossible, because $x^2 + \bar{1}$ has degree 2 and $x + \bar{1}$ has degree 1; note that the degree of a polynomial in $\mathbb{Z}_2[x]$ is well-behaved because \mathbb{Z}_2 is a field (\S3.1, Proposition 1.2).

c. Write “Similarly, $x - 1 \notin I$. Thus I is not a prime ideal.”

Solution: Similarly, $x - 1 \notin I$. Thus I is not a prime ideal.
3. Based on §4.2 #4:

a. Prove that if $\phi: R \to S$ and $\psi: S \to T$ are ring homomorphisms, then so is their composition $\psi \circ \phi: R \to T$.

Solution: For $a, b \in R$, we have

$$\psi(\phi(a + b)) = \psi(\phi(a) + \phi(b)) = \psi(\phi(a)) + \psi(\phi(b)),$$

where the first equality uses the fact that ϕ is a homomorphism and the second uses the fact that ψ is a homomorphism. Similarly,

$$\psi(\phi(ab)) = \psi(\phi(a)\phi(b)) = \psi(\phi(a))\psi(\phi(b)),$$

and

$$\psi(\phi(1_R)) = \psi(1_S) = 1_T.$$

b. Prove that if $\phi: R \to S$ is a ring isomorphism, then so is its inverse $\phi^{-1}: S \to R$.

Solution: We know from basic set theory that if ϕ is a bijection then ϕ^{-1} is too, so it remains to check that ϕ^{-1} is a homomorphism. Given two elements $s_1, s_2 \in S$, let $r_1 = \phi^{-1}(s_1)$ and $r_2 = \phi^{-1}(s_2)$. Because ϕ is a homomorphism, we have

$$\phi(r_1 + r_2) = \phi(r_1) + \phi(r_2) = s_1 + s_2.$$

Applying ϕ^{-1}, we get

$$\phi^{-1}(s_1 + s_2) = r_1 + r_2 = \phi^{-1}(s_1) + \phi^{-1}(s_2).$$

Similarly we find that $\phi^{-1}(s_1s_2) = \phi^{-1}(s_1)\phi^{-1}(s_2)$.

Lastly we have $\phi(1_R) = 1_S$, so $\phi^{-1}(1_S) = 1_R$.