Solutions to Homework 5

1. Recall that an ideal $P \subseteq R$ is called prime if for all $a, b \in R$ with $ab \in P$ we have $a \in P$ or $b \in P$.

 a. Suppose that $S \subset R$ is a subring, and let $Q = P \cap S$. Prove that if P is a prime ideal in R then Q is a prime ideal in S.

 Solution: First we show that Q is an ideal. For $a, b \in Q = P \cap S$, we have $a + b \in P$ because P is an ideal, and $a + b \in S$ because S is a subring, so $a + b \in Q$. If $s \in S$ and $a \in Q$, then $sa \in P$ because $s \in R$, $a \in P$, and P is an ideal; and $sa \in S$ because S is a subring; so $sa \in Q$. Also, Q is not empty: we have $0 \in P$ and $0 \in S$, so $0 \in P \cap S = Q$.

 Next we show that Q is a proper subset of S. If not, then $1 \in Q$, so $1 \in P$, so $P = R$, but we assumed that $P \subset R$.

 Finally, suppose that we have $a, b \in S$ with $ab \in Q$. Then $ab \in P$, so $a \in P$ or $b \in P$ because P is a prime ideal. Because $a \in S$ and $b \in S$, we conclude that $a \in Q$ or $b \in Q$.

 b. Let $P = \langle 2+i \rangle \subset \mathbb{Z}[i]$, which is a prime ideal because $2+i$ is irreducible. Consider the subring $Z \subset \mathbb{Z}[i]$ and the intersection $Q = P \cap Z$. Then Q is a prime ideal of Z, so it’s either $\langle 0 \rangle$ or $\langle p \rangle$ for some prime number $p \in Z$. Which one is it, and if it’s the latter, what is p? Give a proof.

 Solution: I claim that $Q = \langle 5 \rangle$. We have $5 = (2 + i)(2 - i)$, so $5 \in P$, and $5 \in Z$, so $5 \in Q$. Thus Q cannot be $\langle 0 \rangle$, but must be $\langle p \rangle$ for some prime number $p \in Z$. Because $5 \in Q$ we have $p \mid 5$, so $p = 5$.
c. Let \(z \in \mathbb{Z}[i] \) be irreducible. Prove that there is a prime number \(p \in \mathbb{Z} \) such that \(z \) divides \(p \) in \(\mathbb{Z}[i] \), by considering the ideal \(P = \langle z \rangle \) and the intersection \(Q = P \cap \mathbb{Z} \). Conclude that either \(|z|^2 = p \) or \(|z|^2 = p^2 \).

Solution: Because \(z \) is irreducible, \(P = \langle z \rangle \) is a prime ideal of \(\mathbb{Z}[i] \), so \(Q = P \cap \mathbb{Z} \) is a prime ideal of \(\mathbb{Z} \) by part (a). Thus \(Q \) is either \(\langle 0 \rangle \) or \(\langle p \rangle \) for some prime number \(p \in \mathbb{Z} \).

Write \(z = a + bi \). Then \(z \overline{z} = (a + bi)(a - bi) = a^2 + b^2 \) is in \(P \), and it’s in \(\mathbb{Z} \), so it’s in \(Q \). And because \(z \neq 0 \) we have \(a^2 + b^2 \neq 0 \), so \(Q \neq \langle 0 \rangle \).

Thus \(Q = \langle p \rangle \) for some prime number \(p \in \mathbb{Z} \). Because \(p \in Q \) we have \(p \in P \), so \(p = zw \) for some \(w \in \mathbb{Z}[i] \). Taking norms, we get \(p^2 = |z|^2 |w|^2 \), and in particular \(|z|^2 \) divides \(p^2 \). Because \(z \) is not a unit, we have \(|z|^2 \neq 1 \), so either \(|z|^2 = p \) or \(|z|^2 = p^2 \).

§4.3 #6. Prove that \(\mathbb{Z}[i] \) is a principal ideal domain: that is, for every ideal \(I \subset \mathbb{Z}[i] \) there is an element \(z \in \mathbb{Z}[i] \) such that \(I = \langle z \rangle \). Emulate the proof of §4.1 Proposition 1.2, which uses the same ideas as §1.2 Theorem 2.3 and §3.1 Theorem 1.6.

Solution: If \(I = \{0\} \) then we’re done, because \(\{0\} = \langle 0 \rangle \). If not, choose a non-zero \(z \in I \) such that \(|z|^2 \) is as small as possible: that is, for any non-zero \(w \in I \) we have \(|z|^2 \leq |w|^2 \). I claim that \(I = \langle z \rangle \). Because \(z \in I \) we have \(\langle z \rangle \subset I \) by problem 1 of homework 1. To prove the reverse inclusion, let \(w \in I \). By the division algorithm, we can write \(w = qz + r \) for some \(q,r \in \mathbb{Z}[i] \) with \(|r|^2 < |z|^2 \). If \(r \neq 0 \) then this contradicts our choice of \(z \), because \(r = w - qz \), so \(r \in I \) because \(I \) is an ideal, but \(|r|^2 < |z|^2 \). So we must have \(r = 0 \), so \(w = qz \), so \(w \in \langle z \rangle \) as desired.
Based on §4.3 #16. Let R be a commutative ring, let $a, b \in R$, let $S = R/(a)$, and let $T = S/(\bar{b})$, where $\bar{b} \in S$ is the equivalence class of b modulo (a). Prove that $T \cong R/(a, b)$.

Solution: Let $\phi : R \to S$ be the map $\phi(r) = \bar{r}$, and let $\psi : S \to T$ be the map $\psi(s) = \bar{s}$. These are both surjective homomorphisms, so the composition $\psi \circ \phi : R \to T$ is also surjective and a homomorphism. Perhaps annoyingly, we will write $\psi(\phi(r)) = \psi(\bar{r}) = \bar{\bar{r}}$, where the lower bar means an equivalence class modulo $(a) \subset R$ and the upper one means an equivalence class modulo $(\bar{b}) \subset S$.

By the first isomorphism theorem, it is enough to prove that $\ker(\psi \circ \phi) = (a, b)$.

In $S = R/(a)$ we have $\bar{a} = \bar{0}$, and in $T = S/(\bar{b})$ we have $\bar{\bar{b}} = \bar{0}$, so

\[
\psi(\phi(a)) = \psi(\bar{a}) = \psi(\bar{0}) = \bar{\bar{0}} \\
\psi(\phi(b)) = \psi(\bar{b}) = \bar{\bar{b}} = \bar{\bar{0}}.
\]

Thus $a \in \ker(\psi \circ \phi)$ and $b \in \ker(\psi \circ \phi)$, so $(a, b) \subset \ker(\psi \circ \phi)$ by problem 1 of homework 1.

For the reverse inclusion, suppose that $r \in \ker(\psi \circ \phi)$, or equivalently, $\bar{\bar{r}} = \bar{\bar{0}}$. Then $\bar{r} = \bar{s} \cdot \bar{b}$ for some $s \in S$, and we can write $s = \bar{y}$ for some $y \in R$, so $\bar{r} = \bar{y} \cdot \bar{b} = \bar{yb}$. Thus $r - yb = xa$ for some $x \in R$, so $r = xa + yb$, so $r \in (a, b)$.

(If you found this confusing, I encourage you again to check out the extra notes from Lecture 14.)