Homework 4

Due Monday, October 23, 2023

- 1. On homework 1 we saw three different metrics on \mathbb{R}^2 . Prove one of the following:
 - (a) A subset $A \subset \mathbb{R}^2$ is open in the Euclidean metric if and only if it is open in the taxicab metric.
 - (b) A subset $A \subset \mathbb{R}^2$ is open in the Euclidean metric if and only if it is open in the square metric.
 - (c) A subset $A \subset \mathbb{R}^2$ is open in the taxicab metric if and only if it is open in the square metric.
- 2. Let $f: X \to Y$ be any map of sets. The *image* of a subset $A \subset X$ is

$$f(A) = \{ f(a) : a \in A \},\$$

or equivalently

$$f(A) = \{ y \in Y : y = f(a) \text{ for some } a \in A \}.$$

This is a subset of Y.

- (a) Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2$. Find f(A) for the following subsets $A \subset \mathbb{R}$: the intervals [-1, 1], [-1, 1), (-1, 1), [0, 1], [0, 1), and (0, 1), and the singletons $\{-1\}, \{0\}$, and $\{1\}$.
- (b) Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by f(x, y) = x. Choose a few subsets $A \subset \mathbb{R}^2$ and sketch both A and f(A).
- (c) Now let $f: X \to Y$ be arbitrary, and let $A, B \subset X$. Prove that if $A \subset B$ then $f(A) \subset f(B)$. Prove that $f(A \cup B) = f(A) \cup f(B)$. Prove that $f(A \cap B) \subset f(A) \cap f(B)$, but give an example where the two are not equal.

3. Let $f: X \to Y$ be a map of sets. The *preimage* of a subset $B \subset Y$ is

$$f^{-1}(B) = \{ x \in X : f(x) \in B \},\$$

or equivalently

$$f^{-1}(B) = \{x \in X : f(x) = b \text{ for some } b \in B\}.$$

This is a subset of X.

- (a) Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2$. Find $f^{-1}(B)$ for the following subsets $B \subset \mathbb{R}$: the intervals [-1, 1], [-1, 1), (-1, 1), [0, 1], [0, 1), and (0, 1), and the singletons $\{-1\}, \{0\}$, and $\{1\}$.
- (b) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by f(x, y) = xy. Sketch $f^{-1}(B)$ when *B* is $\{0\}, \{1\}, [0, 1], (0, 1), \text{ and } [0, 1).$
- (c) Now let $f: X \to Y$ be arbitrary, and let $A, B \subset Y$. Prove that if $A \subset B$ then $f^{-1}(A) \subset f^{-1}(B)$. Prove that $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$, and that $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$.
- 4. (a) The function $f : \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} x & \text{if } x \le 0\\ x+1 & \text{if } x > 0 \end{cases}$$

is discontinuous (with the usual metric on \mathbb{R}). Give an example of an open set $V \subset \mathbb{R}$ such that $f^{-1}(V)$ is not open.

(b) Optional: Last week you proved that he function $f\colon \mathbb{R}^2\to \mathbb{R}$ defined by

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

is discontinuous (with the usual metric on \mathbb{R}^2 and \mathbb{R}). Give an example of an open set $V \subset \mathbb{R}$ such that $f^{-1}(V)$ is not open.

5. What is one question you have about last week's lectures?