Homework 9

Due Friday, December 1, 2023

- 1. This week we proved that a closed, bounded subset of \mathbb{R}^n (with the usual metric) is compact, but this is not true in every complete metric space. Let X = C([0, 1]) with the sup metric, and let $B \subset X$ be the closed ball of radius 1 around the origin. Prove that B is not compact by constructing a sequence f_1, f_2, \ldots in B that has no convergent subsequence.
- 2. In week 5 we proved the following generalization of the nested interval theorem: If X is a complete metric space and $F_1 \supset F_2 \supset \cdots$ is a nested sequence of closed subsets whose diameters tend to zero, then the intersection $F_1 \cap F_2 \cap \cdots$ is not empty.

Now prove another generalization: If X be a compact topological space and $F_1 \supset F_2 \supset \cdots$ is a nested sequence of closed sets, then the intersection $F_1 \cap F_2 \cap \cdots$ is not empty.

Hint: Otherwise the complements $X \setminus F_1$, $X \setminus F_2$, ... form an open cover of X.

- 3. Optional: Let X is a metric space. A map $f: X \to X$ is called a *contraction mapping* if there is an $r \in [0, 1)$ such that for all $p, q \in X$ we have $d(f(p), f(q)) \leq r \cdot d(p, q)$. In week 3 we proved that if X is complete, then any contraction mapping has a fixed point.
 - (a) A map f: X → X is called a *weak contraction mapping* if for all p ≠ q we have d(f(p), f(q)) < d(p,q). Prove that if X is compact space, then any weak contraction mapping has a fixed point. Hint: Apply the extreme value theorem to the function F: X → R given by F(p) = d(p, f(p)), which you'll need to argue is continuous.
 - (b) Let $X = [1, \infty)$ with the usual metric. Prove that the map $f: X \to X$ given by $f(x) = x + \frac{1}{x}$ is a weak contraction mapping with no fixed point.