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1 Continuity, Convergence, and Metric Spaces

In a previous course you may have seen the definition of continuity and
convergence in Rn:

Definition 1.1.

(a) A map f : Rm → Rn is continuous at a point a ∈ Rm if for every ϵ > 0
there is a δ > 0 such that for all x ∈ Rm with |x − a| < δ we have
|f(x)− f(a)| < ϵ.

(b) A sequence of points x1,x2,x3, . . . ∈ Rn converges to a limit ℓ ∈ Rn if
for every ϵ > 0 there is a natural number N such that for all n ≥ N
we have |xn − ℓ| < ϵ.

You don’t have to be completely at ease with these definitions, but if you
haven’t at least worked with them in one variable – that is, with functions
f : R → R and sequences of numbers x1, x2, x3, . . . ∈ R – then you should
take a rigorous advanced calculus course, called introductory real analysis in
some places, before taking this one. My favorite book is Spivak’s Calculus.
Oregon’s Math 316–317 currently uses Abbott’s Understanding Analysis.

In the definition above, |x − a| means the length of the vector x − a,
which we should understand as measuring the distance between x and a
in Rm, and similarly with |f(x) − f(a)| and |xn − ℓ|. This course begins
from the observation that when we study continuous maps and convergent
sequences, we can forget almost everything we know about vectors and their
geometry, and retain only the notion of distance. We introduce the following
definition.

Definition 1.2. A metric on a set X is a function d : X ×X → R≥0 such
that

(a) d(p, q) = d(q, p) for all p, q ∈ X,

(b) d(p, q) = 0 if and only if p = q, and

(c) d(p, q) ≤ d(p, r) + d(r, q) for all p, q, r ∈ X.

The last property is called the triangle inequality :

p q

r

p

q r
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Now we can translate our definition of continuity and convergence in this
abstract setting:

Definition 1.3. Let X and Y be sets equipped with metrics dX and dY .

(a) A map f : X → Y is continuous at a point p ∈ X if for every ϵ > 0
there is a δ > 0 such that for all q ∈ X with dX(p, q) < δ we have
dY (f(p), f(q)) < ϵ.

(b) A sequence of points p1, p2, p3, . . . ∈ X converges to a limit ℓ ∈ X if
for every ϵ > 0 there is a natural number N such that for all n ≥ N
we have dX(pn, ℓ) < ϵ.

We will often say “let (X, d) be a metric space,” which means that X
is a set and d is a metric on it. A set will typically admit many metrics,
or to put it another way, we can have many metric spaces with the same
underlying set. Here are some of the examples that we will be interested in.

Example 1.4. Three metrics on Rn.

(a) The Euclidean metric: given two points x = (x1, x2, . . . , xn) and y =
(y1, y2, . . . , yn), we define

d2(x,y) =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2.

(b) The taxicab metric

d1(x,y) = |x1 − y1|+ |x2 − y2|+ · · ·+ |xn − yn|.

The name alludes to the driving distance between two points in a city
whose roads are laid out on a grid, like Manhattan or Eugene.

(c) The square metric on Rn:

d∞(x,y) = max{|x1 − y1|, |x2 − y2|, . . . , |xn − yn|}.

The reason for the name will become clear in Exercise 1.1.
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On R1 these three metrics are all the same, but when n ≥ 2 they are all
different: for example, they give different distances between (0, 0, . . . , 0) and
(1, 1, . . . 1). We will eventually see, however, that they all have the same
continuous maps and convergent sequences.

Example 1.5. Interpolating between those three metrics, and a non-example.
For p > 0 and x,y ∈ Rn we can define

dp(x,y) =
(
|x1 − y1|p + |x2 − y2|p + · · ·+ |xn − yn|p

)1/p
.

We see that p = 1 gives the taxicab metric, p = 2 gives the Euclidean
metric, and it is interesting to think about how letting p → ∞ gives the
square metric. We see that dp satisfies the first two properties of Definition
1.2, and it turns out to satisfy the last property (the triangle inequality) if
p ≥ 1, although this is not obvious. On the other hand, if 0 < p < 1 then
the triangle inequality fails: for example, with p = 1/2 we have

d1/2((0, 0), (0, 1)) =
(
|0− 0|1/2 + |0− 1|1/2

)2
= (0 + 1)2 = 1,

d1/2((0, 1), (1, 1)) =
(
|0− 1|1/2 + |1− 1|1/2

)2
= (0 + 1)2 = 1,

d1/2((0, 0), (1, 1)) =
(
|0− 1|1/2 + |0− 1|1/2

)2
= (1 + 1)2 = 4,

but 4 is bigger than 1 + 1.

1

1
4?

Example 1.6. To illustrate how permissive the definition of a metric is, we
introduce the SNCF metric on R2:

d∗(p, q) =


d2(p, q)

if p and q lie on the same line
through the origin, or

d2(p, 0) + d2(0, q) otherwise,

where d2 is the Euclidean metric. You should convince yourself that this
satisfies the triangle inequality.

SNCF stands for Société nationale des chemins de fer français, the
French national railway company; the joke is that if you want to go from,
say, Dijon to Bordeaux, you might as well take the train up to Paris and
back down. In the UK, it is called the British Rail metric; in Eugene, the
LTD bus metric.
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Example 1.7. The induced metric on a subset.
If Y is a subset of X, then a metric d : X×X → R induces a metric on Y ,

just by restricting the domain of d to Y ×Y ⊂ X ×X: that is, by declaring
that the distance between two points in the subspace Y is the same as it
was in the ambient space X. So for example if X = R3 and Y is a surface,

then we can get metrics on Y by restricting the Euclidean metric, the taxicab
metric, or the square metric from R3.

This surface carries other interesting metrics as well: for example, we
could declare the distance between two points on the surface to be the length
of the shortest path between them on the surface, which will be different
from the shortest path through the ambient space. That metric belongs to a
subject called Riemannian geometry, and is beyond the scope of this course.

Example 1.8. Some spaces of functions.
Let C([0, 1]) be the set whose elements are continuous, real-valued func-

tions f : [0, 1] → R. This set is much too big to visualize like we do R2 or R3,
but we want to regard its elements as points in a huge space and consider
different ways of measuring the distance between them. There are many
interesting metrics on C([0, 1]), for example the L1 metric

d1(f, g) =

∫ 1

0
|f(x)− g(x)| dx,

the L2 metric

d2(f, g) =

√∫ 1

0
|f(x)− g(x)|2 dx,

the L∞ or sup metric

d∞(f, g) = sup
x∈[0,1]

|f(x)− g(x)|,
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and the Lp metrics for p ≥ 1, which interpolate between these:

dp(f, g) =

(∫ 1

0
|f(x)− g(x)|p dx

)1/p

.

It is interesting to think about how these metrics are analogous to the
metrics on Rn that we named d1, d2, d∞, and dp a moment ago. But whereas
those metrics on Rn will all turn out to give the same continuous maps and
convergent sequences, these ones do not:

(a) A sequence in C([0, 1]) that converges in the L1 metric but not in the
sup metric.

For n = 1, 2, 3, . . . , consider the function fn : [0, 1] → R that goes
piecewise linearly from f(0) = 0 to f(1/n) = 1 to f(1) = 1:

I claim that the sequence f1, f2, f3, . . . converges to the constant func-
tion g(x) = 1 in the L1 metric, but not in the sup metric. On the one
hand, d1(fn, g) =

∫ 1
0 |fn − g| is the area of the triangle shown,

so that’s 1/2n, which goes to zero as n → ∞, so fn → g in the L1

metric. On the other hand, d∞(fn, g) = supx∈[0,1] |fn(x) − g(x)| is
equal to 1 for all n, which does not go to zero as n → ∞, so fn ̸→ g
in the sup metric.

You can check that the same thing happens with fn(x) = xn and
g(x) = 0.

You can unpack the definitions to see that a sequence of functions
converges in the sup metric if and only if it converges uniformly.
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(b) Integration gives a map from C([0, 1]) to R that is continuous in both
the sup metric and the L1 metric.

Consider the map Φ: C([0, 1]) → R given by Φ(f) =
∫ 1
0 f(x) dx.

First I claim that Φ is continuous if C([0, 1]) is given the sup metric
(and the target space R is given the usual Euclidean metric). Unpack-
ing the definitions, this means that for every f ∈ C([0, 1]) and every
ϵ > 0, there is a δ > 0 such that for all g ∈ C([0, 1]) with d∞(f, g) < δ
we have |Φ(f)−Φ(g)| < ϵ. So let f ∈ C([0, 1]) and ϵ > 0 be given, and
choose some δ < ϵ, say δ = ϵ/2. If d∞(f, g) < δ, then for all x ∈ [0, 1]
we have |f(x)− g(x)| < δ, so

|Φ(f)− Φ(g)| =
∣∣∣∣∫ 1

0
f(x) dx−

∫ 1

0
g(x) dx

∣∣∣∣
=

∣∣∣∣∫ 1

0
(f(x)− g(x)) dx

∣∣∣∣ ≤ ∫ 1

0
|f(x)− g(x)| dx ≤

∫ 1

0
δ dx = δ < ϵ,

which is what we wanted.

Next I claim that Φ is also continuous in the L1 metric. Let f ∈
C([0, 1]) and ϵ > 0 be given, and take δ = ϵ. If d1(f, g) < δ, then

|Φ(f)− Φ(g)| =
∣∣∣∣∫ 1

0
f(x) dx−

∫ 1

0
g(x) dx

∣∣∣∣
=

∣∣∣∣∫ 1

0
(f(x)− g(x)) dx

∣∣∣∣ ≤ ∫ 1

0
|f(x)− g(x)| dx = d1(f, g) < δ = ϵ,

which is what we wanted.

(c) Evaluation at x = 0 gives a map from C([0, 1]) to R that is continuous
in the sup metric but not in the L1 metric.

Consider the map Ψ: C([0, 1]) → R given by Ψ(f) = f(0).

On the one hand, I claim that Ψ is continuous in the sup metric. Let
f ∈ C([0, 1]) and ϵ > 0 be given, and take δ = ϵ. If d∞(f, g) < δ, then
for all x ∈ [0, 1] we have |f(x)− g(x)| < δ, so

|Ψ(f)−Ψ(g)| = |f(0)− g(0)| < δ = ϵ,

as desired.
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On the other hand, I claim that Ψ is not continuous in the L1 metric.
Take the sequence f1, f2, f3, . . . from part (a) above, which converges
in the L1 metric to the constant function g. If Ψ were continuous in
the L1 metric, then the sequence Ψ(f1),Ψ(f2),Ψ(f3), . . . in R would
converge to Ψ(g) by Exercise 1.11 below, but in fact we have Ψ(fn) = 0
for all n while Ψ(g) = 1.

Our definition of the sup metric implicitly uses the fact that a continuous
function on [0, 1] is bounded: otherwise sup |f − g| might be infinite. You
have probably seen this proved in a first course in real analysis; we will
assume it for now, and prove it properly when we come to compactness.

Example 1.9. There are many other function spaces. For example, we
can take the set C1([0, 1]) of functions f : [0, 1] → R that are continuously
differentiable, meaning that the derivative f ′ exists and is continuous, and
give it the metric

d(f, g) = sup |f − g|+ sup |f ′ − g′|,

called the C1 metric. Or we can give it one of the Sobolev metrics

d(f, g) =
(
(dp(f, g))

p + (dp(f
′, g′))p

)1/p
,

where dp is the Lp metric from Example 1.8 and p ≥ 1. More generally, we
can take the set Ck([0, 1]) of functions whose first k derivatives exist and are
continuous, and give it a similarly-defined Ck metric, Sobolev metrics, and
many others. We can generalize further to functions of several variables,
and on and on. These function spaces are useful in studying solutions to
partial differential equations.

We conclude this section with a key fact relating continuous maps and
convergent sequences, leaving part of the proof as an exercise.

Proposition 1.10. Let (X, dX) and (Y, dY ) be metric spaces. Then a map
f : X → Y is continuous at a point ℓ ∈ X if and only if for every sequence
p1, p2, p3, . . . in X that converges to ℓ, the sequence f(p1), f(p2), f(p3), . . .
in Y converges to f(ℓ).
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Proof. One direction – if f is continuous at ℓ then it takes any sequence
converging to ℓ to a sequence converging to f(ℓ) – is Exercise 1.11 below. For
the other direction, let us argue that if f is not continuous at ℓ, then there
is a sequence p1, p2, . . . ∈ X that converges to ℓ, but f(p1), f(p2), . . . ∈ Y
does not converge to f(ℓ).

To say that f is not continous at ℓ means that there is an ϵ > 0 such that
for every δ > 0, there is a point p ∈ X with dX(p, ℓ) < δ but dY (f(p), f(ℓ)) ≥
ϵ. So for each n = 1, 2, 3, . . . , we can take δ = 1/n and get a point pn such
that dX(pn, ℓ) < 1/n but d(f(pn), f(ℓ)) ≥ ϵ. Then the sequence p1, p2, p3, . . .
converges to ℓ, but f(p1), f(p2), f(p3), . . . does not converge to f(ℓ). (You
may want to write out the details of these last two claims as well.)

Exercises.

1.1. (a) For each of the three metrics in Example 1.4, sketch the open ball
of some radius r > 0 around the origin in R2:

Br(0) = {(x, y) ∈ R2 : d((x, y), 0) < r}.

(b) For one of the three metrics (your choice), prove or give a counter-
example to the following statement: a sequence of points (x1, y1),
(x2, y2), (x3, y3), . . . ∈ R2 converges to a limit (x, y) if and only if
xn → x and yn → y separately, as sequences in R with the usual
metric.

(c) Why is

d(x,y) = min{|x1 − y1|, |x2 − y2|, . . . , |xn − yn|}

not a metric on Rn? [Part (c) was not part of Homework 1, I
added it to the notes later.]

1.2. The SNCF metric on R2 was introduced in Example 1.6.

(a) Give an example of a sequence that converges in the Euclidean
metric but not in the SNCF metric.

(b) Prove that every sequence that converges in the SNCF metric
converges in the Euclidean metric.
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1.3. Consider the following silly metric on R2:

d((x1, y1), (x2, y2)) =

{
|y1 − y2| if x1 = x2

|y1 − y2|+ 1 if x1 ̸= x2.

(a) Prove that d is a metric, that is, it has the three properties listed
in Definition 1.2.

(b) Sketch the open balls of radius 1/2, 1, and 2 around the origin in
this metric.

(c) Give an example of a sequence that converges in the Euclidean
metric d2 but not in our silly metric d.

(d) Prove that every sequence that converges in d also converges d2.

1.4. In Example 1.8(a) we saw a sequence in C([0, 1]) that converges in the
L1 metric but not in the sup metric. Prove that the reverse cannot
happen: every sequence that converges in the sup metric converges in
the L1 metric.

1.5. Let (X, d) be a metric space. Prove the reverse triangle inequality :

|d(p, q)− d(p, r)| ≤ d(q, r)

for all p, q, r ∈ X. Include an appropriate picture.

1.6. Let (X, dX) and (Y, dY ) and (Z, dZ) be metric spaces. Let f : X → Y
be continuous at a point p ∈ X, and let g : Y → Z be continuous at
f(p). Prove that g ◦ f is continuous at p.

1.7. Let (X, d) be a metric space, and fix a point a ∈ X. Prove that the
map f : X → R given by f(p) = d(p, a) is continuous.

Hint: Use the triangle inequality.

1.8. Let X be any set, and let dX be the discrete metric

dX(p, q) =

{
0 if p = q, or

1 if p ̸= q.

(a) Prove that dX is a metric.

(b) Let (Y, dY ) be another metric space (not necessarily discrete).
Prove that every map f : X → Y is continuous.
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(c) Prove that a sequence p1, p2, p3, . . . ∈ X converges in the discrete
metric if and only if it is eventually constant.

1.9. Let p1, p2, p3, . . . be a sequence in a metric space (X, d), and suppose
that pn → ℓ and pn → ℓ′ for two points ℓ, ℓ′ ∈ X. Prove that ℓ = ℓ′.

Hint: Prove that d(ℓ, ℓ′) < ϵ for every ϵ > 0, using the triangle
inequality. Then argue that this implies ℓ = ℓ′.

1.10. Let p1, p2, p3, . . . and p′1, p
′
2, p

′
3, . . . be two sequences in a metric space

(X, d). Prove that if pn → ℓ and d(pn, p
′
n) → 0 as n → ∞, then

p′n → ℓ.

1.11. (One direction of Proposition 1.10.) Let (X, dX) and (Y, dY ) be metric
spaces, let p1, p2, p3, . . . be a sequence that converges to a point ℓ in
X, and let f : X → Y be continuous at ℓ. Prove that the sequence
f(p1), f(p2), f(p3), . . . converges to f(ℓ) in Y .

1.12. Let
W = {1, 12 ,

1
3 ,

1
4 , . . . , 0}

with the metric induced from the usual one on R. Let (X, dX) be
another metric space. Given a sequence p1, p2, p3 . . . ∈ X and a point
ℓ ∈ X, prove that the map f : W → X defined by{

f( 1n) = pn,

f(0) = ℓ

is continuous if and only if pn → ℓ.

2 Open and Closed Sets

Let us fix a metric space (X, d) for the whole section.

Definition 2.1. The open ball of radius r around a point p ∈ X is

Br(p) = {q ∈ X : d(p, q) < r} ⊂ X.

In R2 with the Euclidean metric, this looks like

r

p
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Definition 2.2. A subset U ⊂ X is open if for every p ∈ U there is an r > 0
such that Br(p) ⊂ U .

p
r

U

Definition 2.3. A subset F ⊂ X is closed if for every sequence of points
p1, p2, p3, . . . ∈ F converging to a limit ℓ ∈ X, we have ℓ ∈ F .

p1

ℓ

F p2
p3

Thus an open subset is one where you can move around a little bit
without leaving the subset, and a closed subset is one where you can’t get
out by taking the limit of a sequence. The letter F is from the French fermé,
closed. The letter U seems to be from the German Umgebung, neighborhood,
as in the early texts by Hausdorff [2, VII §1] and Tietze [3].

Example 2.4. In R in the usual topology, the interval [1, 2] is closed, but
not open – any open ball around 1 or 2 spills out.

1 2

The interval (1, 2) is open but not closed – the sequence 3
2 ,

4
3 ,

5
4 , . . . converges

to 1 which is not in the set.

1 2

The interval (1, 2] is neither open nor closed.

1 2

The French write ]1, 2[ rather than (1, 2), reserving the latter for an ordered
pair or point in the plane; similarly they write ]1, 2] rather than (1, 2].
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Example 2.5. The rational numbers Q ⊂ R are neither open nor closed
in the usual metric. On the one hand, if x is rational and r > 0 then
the ball Br(x), which is just the interval (x − r, x + r), contains irrational
numbers. On the other hand, a sequence of rational numbers can converge
to an irrational number: for example

1, 1.4, 1.41, 1.414, 1.4142, 1.41421, 1.414213 →
√
2

Example 2.6. The picture in Definition 2.2 shows a subset of R2 that is
open but not closed in the Euclidean metric, and the one in Definition 2.3
shows one that is closed but not open. Here is one that is neither open nor
closed:

p1
p2

p3

ℓ?p
r?

You should get the feeling that “most” subsets are neither open or closed.

Example 2.7. Let X = C1([0, 1]), the set of continuously differentiable
functions, with the C1 metric from Example 1.9. The subset consisting of
functions with simple roots – that is, those for which f ′(x) ̸= 0 whenver
f(x) = 0 – turns out to be open. Exercise 2.3 asks you to prove this, but
it agrees with our intuition that if we take a function with simple roots and
wiggle it a bit, then it still has simple roots:

This is a first taste of what is called transversality.
But the set of functions with simple roots is not closed: for example, the

functions
fn(x) =

(
x− 1

2 − 1
n

) (
x− 1

2 + 1
n

)
all have simple roots (at 1

2 ±
1
n), but they converge to g(x) = (x− 1

2)
2 which

does not.
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Example 2.8. Let X = C([0, 1]) with the sup metric, and fix a subset
A ⊂ [0, 1]. The subset consisting of functions that vanish on A – that is,
those with f(x) = 0 for all x ∈ A – turns out to be closed in the sup metric.
Exercise 2.4 asks you to prove this. But it is not closed in the L1 metric, as
we can see from Example 1.8(a).

Example 2.9. In a discrete metric (Exercise 1.8), every subset is both open
and closed.

Here are some basic properties of closed sets. Exercise 2.6 asks you to
prove the analogous properties of open sets.

Proposition 2.10. If F,G ⊂ X are closed, then the union F ∪G is again
closed.

Proof. Let p1, p2, p3, . . . ⊂ F ∪G be a sequence converging to a limit ℓ ∈ X.
By the pigeonhole principle, either there are infinitely many n such that
pn ∈ F , or infinitely many such that pn ∈ G, or both. In the first case, the
subsequence consisting of pns that lie in F still converges to ℓ; because F is
closed, we have ℓ ∈ F , so ℓ ∈ F ∪ G. Similarly, in the second case we get
ℓ ∈ F ∪G.

By induction, if we have finitely many closed sets F1, F2, . . . , Fn ⊂ X,
then their union F1 ∪ F2 ∪ · · · ∪ Fn is again closed. But we could have a
countable collection of closed sets whose union is not countable: for example,
if for n = 1, 2, 3, . . . we set Fn = [ 1n , 1] ⊂ R, then each Fn is closed in the
usual metric, but

F1 ∪ F2 ∪ F3 ∪ · · · = (0, 1]

is not closed.
On the other hand, an arbitrary (even uncountable) intersection of closed

sets is closed:

Proposition 2.11. Let I be a set, and suppose that for each i ∈ I we have
a closed set Fi ⊂ X. Then the intersection

⋂
i∈I Fi is again closed.

Proof. Let p1, p2, p3, . . . ∈
⋂
Fi be a sequence converging to a limit ℓ ∈ X.

For every i ∈ I we have p1, p2, p3, . . . ∈ Fi. Because Fi is closed, we have
ℓ ∈ Fi. Because this is true for every i ∈ I, we have ℓ ∈

⋂
Fi.
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Open and closed sets are dual to one another, in the following sense:

Proposition 2.12. A subset A ⊂ X is closed if and only if the complement
X \A is open.

Proof. We will prove that A is not closed if and only if the complement
X \A is not open.

First suppose that A is not closed, meaning that there is a sequence
p1, p2, p3, . . . ∈ A that converges to a limit ℓ ∈ X \A. For every ϵ > 0 there
is an N such that for all n ≥ N , we have d(pn, ℓ) < ϵ. Thus the ball Bϵ(ℓ)
contains points pN , pN+1, . . . that are in A, so the ball is not contained in
X \ A. Thus X \ A is not open, because there is no ball around ℓ that is
contained in X \A.

Conversely, suppose that X \A is not open, meaning that there is a point
p ∈ X \A such that for every r > 0, the ball Br(p) is not contained in X \A,
that is, it meets A. For each n = 1, 2, 3, . . . , take r = 1/n, and choose a
point qn ∈ B1/n(p) ∩ A. Then the sequence q1, q2, q3, . . . is contained in A,
but d(qn, p) < 1/n, so qn → p which is not in A. Thus A is not closed.

Exercises.

2.1. Let X = R2 with the Euclidean metric. Sketch the subset

A = {(x, y) ∈ R2 : x ̸= 0 or y = 0}.

Prove that A is neither open nor closed.

2.2. Let X = Q with the metric induced from the usual one on R: that is,
d(x, y) = |x− y| for all x, y ∈ Q, but we’re thinking about Q in itself
and forgetting about the rest of R.

(a) Prove that the subset

{x ∈ Q : x2 < 1}

is open but not closed.

(b) Prove that the subset

{x ∈ Q : x2 < 2}

is both open and closed.

(You may use the fact that
√
2 is irrational without proving it.)
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2.3. Let U ⊂ C1([0, 1]) be the set of functions with simple roots as in
Example 2.7. Prove that U is open in the C1 metric.

Hint: For a given f ∈ U , take the ball of radius

r = inf
x∈[0,1]

(
|f(x)|+ |f ′(x)|

)
.

2.4. Let A ⊂ [0, 1], and let F ⊂ C([0, 1]) be the set of continuous functions
that vanish on A as in Example 2.8. Prove that F is closed in the sup
metric.

Hint: One possibility is to use Proposition 1.10 together with Example
1.8(c), which is stated for evaluation at x = 0 but which we can see is
equally valid for evaluation at any x ∈ [0, 1].

2.5. (a) For a point p ∈ X and a radius r > 0, the open ball Br(p) ⊂ X
was defined in Definition 2.1. Prove that it is open.

(b) Define the closed ball

B̄r(p) = {q ∈ X : d(p, q) ≤ r}.

Prove that it is closed.

Hint: You can prove it directly, or you can use Proposition 2.12.

2.6. Without using Proposition 2.12,

(a) Prove that if U, V ⊂ X are open, then the intersection U ∩ V is
again open.

(b) Give an example of countably many open sets U1, U2, U3, . . . ⊂ X
such that their intersection U1 ∩ U2 ∩ U3 ∩ · · · is not open.

(c) Let I be a set, and suppose that for each i ∈ I we have an open
set Ui ⊂ X. Prove that the union

⋃
i∈I Ui is again open.

(Don’t assume that the index set I is countable!)

2.7. Given a subset A ⊂ X, a point p ∈ X is called a limit point of A if for
every r > 0 there is a point q ∈ A ∩Br(p) with q ̸= p.

Prove that A is closed if and only if it contains all its limit points.

(Some authors take this as the definition of a closed set.)
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2.8. In Example 1.4 we saw three different metrics on R2. Prove one of the
following:

(a) A subset A ⊂ R2 is open in the Euclidean metric if and only if it
is open in the taxicab metric.

(b) A subset A ⊂ R2 is open in the Euclidean metric if and only if it
is open in the square metric.

(c) A subset A ⊂ R2 is open in the taxicab metric if and only if it is
open in the square metric.

3 Completeness

We have called a subset F ⊂ X closed if it contains all the limits it should
– or at least, all the limits that X knows about. Sometimes, however, the
metric space X itself has sequences that seem like they ought to converge,
but the limit is missing. For example, take X = C([0, 1]) with the L1

metric, and for n = 2, 3, 4, . . . , consider the function fn : [0, 1] → R that
goes piecewise linearly from f(0) = 0 to f(12 − 1

n) = 0 to f(12 + 1
n) = 1 to

f(1) = 1:

As n → ∞, we see that fn(x) looks more and more the step function g(x)
that jumps from 0 to 1 at x = 1/2. The sequence does not converge to g
in the sup metric, but it would in the L1 metric, if g were in C([0, 1]): the
distance between fn and g would be the area of the two triangles shown,

which is 1
2n → 0. But g is not in C([0, 1]). We will name this problem by

saying that the L1 metric on C([0, 1]) is incomplete.
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For a more familiar example, the sequence

1, 1.4, 1.41, 1.414, 1.4142, 1.41421, 1.414213, . . . ∈ Q

wants to approach a limit, namely
√
2, but the limit is missing, so we have

to complete the rational numbers Q to get the real numbers R.

To formalize this, we introduce the definition of a Cauchy sequence,∗

which tries to say that the sequence converges without referring to the limit,
because the limit might be missing from our metric space.

Definition 3.1. A sequence p1, p2, p3, . . . in a metric space (X, d) is Cauchy
if for every ϵ > 0 there is a natural number N such that for all m,n ≥ N
we have d(pm, pn) < ϵ.

In contrast to Definition 1.3(b) of a convergent sequence, where the tails of
the sequence get arbitrarily close to a limit point ℓ, here the tails just get
close to themselves.

Proposition 3.2. Let (X, d) be a metric space. If a sequence p1, p2, p3, . . .
converges to a limit ℓ, then it is Cauchy.

Proof. Let ϵ > 0 be given. Because the sequence converges to ℓ, there is a
natural number N such that n ≥ N implies d(pn, ℓ) < ϵ/2. Thus if m,n ≥ N
then the triangle inequality gives

d(pm, pn) ≤ d(pm, ℓ) + d(ℓ, pn) < ϵ/2 + ϵ/2 = ϵ.

Definition 3.3. A metric space is complete if every Cauchy sequence con-
verges.

Proposition 3.4. R is complete in the usual metric.

You have probably seen this proved in a first course in real analysis, but
we review the proof, which relies on the fact that a bounded set in R has
a supremum (least upper bound) and an infimum (greatest lower bound).
That is, the completeness of R as a metric space follows from its completeness
as an ordered set.

∗Named for Augustin-Louis Cauchy, 1789–1857, and pronounced ko-shee, not kaw-shee.
It’s difficult for English speakers to avoid stressing one syllable or the other, so American
speakers tend say ko-SHEE, while British speakers tend to say KO-shee. The same thing
happens with ballet, garage, and many other words borrowed from French.
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Proof of Proposition 3.4. Let x1, x2, x3, . . . ∈ R be a Cauchy sequence.
Exercise 3.3 asks you to prove that a Cauchy sequence is bounded: thus

there is an M ∈ R such that |xn| ≤ M for all n.
Take the limit superior and limit inferior

ℓ = lim inf
n→∞

xn and L = lim sup
n→∞

xn,

which are defined as follows. For n = 1, 2, 3, . . . , let

an = inf{xn, xn+1, xn+2 . . . } and An = sup{xn, xn+1, xn+2, . . . },

which exist because our sequence is bounded. We see that

−M ≤ an ≤ xn ≤ An ≤ M. (3.1)

We define

ℓ = sup{a1, a2, a3 . . . } and L = sup{A1, A2, A3, . . . }.

The sequence a1, a2, a3, . . . is non-decreasing, because each term is the in-
fimum of a smaller set than the one before, and a bounded non-decreasing
sequence converges to its supremum, so an → ℓ as n → ∞. Similarly we
have An → L as n → ∞.

We want to prove that the sequence x1, x2, x3, . . . · converges. By in-
equalities (3.1) and the squeeze theorem, it is enough to prove that ℓ = L,
or equivalently, that |An − an| → 0 as n → ∞. Let ϵ > 0 be given. Because
x1, x2, . . . is a Cauchy sequence, there is an N such that for all m,n ≥ N we
have |xm−xn| < ϵ/3. Because aN was defined as an infimum, there is some
m ≥ N such that xm < aN + ϵ/3; otherwise aN + ϵ/3 would have been a
greater lower bound for the set {xN , xN+1, . . . }. Similary, there is an n ≥ N
such that xn > AN − ϵ/3. Now by the triangle inequality we have

|AN − aN | ≤ |AN − xn|+ |xn − xm|+ |xm − aN | < ϵ/3 + ϵ/3 + ϵ/3 = ϵ.

Because the As are non-increasing and the as are non-decreasing, for all
ν ≥ N we have |Aν − aν | ≤ |AN − aN | < ϵ, which is what we wanted.
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Example 3.5. On the other hand, R is not complete in the metric

d(x, y) = |arctanx− arctan y|,

because the sequence 1, 2, 3, . . . is Cauchy but does not converge. To see that
it is Cauchy, note that the sequence arctan 1, arctan 2, arctan 3, . . . converges
to π/2 in the usual metric, so it is Cauchy in the usual metric, so for every
ϵ > 0 there is an N such that if m,n ≥ N then |arctanm − arctann| < ϵ.
To see that it does not converge, note that the distance from 1, 2, 3, . . . to
any ℓ ∈ R approaches π/2−arctan(ℓ), and in particular does not go to zero.

If we wanted to make R complete in this metric, we would need to add
two more points at ±∞. We will return to the idea of completion soon.

One can show that R with this metric has the same continuous functions,
convergent sequences, and open and closed sets as it does in the usual metric.
Later we will see that continuity and convergence can be defined purely in
terms of open sets, but this example shows that completeness cannot.

Example 3.6. Rn is complete in any of the metrics from Example 1.4. To
see this, let x1,x2,x3, . . . be a sequence in Rn that is Cauchy under one of
the three metrics. Exercise 1.1(b) asked you to prove that the sequence of
points in R2 converges in one of the three metrics if and only if each of its
coordinates converges in the usual metric, and the same proof applies to Rn.
So if we let the ith coordinate of xn be called xn,i, then it is enough to prove
that the sequence x1,i, x2,i, x3,i, . . . is Cauchy in R in the usual metric. This
follows from the fact that

|xm,i − xn,i| ≤ d(xm,xn),

in any of the three metrics.

Example 3.7. Poincaré’s hyperbolic ball and half-space.
Consider the open unit ball

B = {x ∈ Rn : |x| < 1}.

The Euclidean metric that B inherits as a subset of Rn is not complete: a
sequence that approaches a point on the boundary sphere will be Cauchy,
but will not converge. On the other hand, the hyperbolic metric

d(x,y) = cosh−1

(
1 + 2

|x− y|2

(1− |x|2)(1− |y|2)

)
turns out to be complete. Here are two images from a series of four by
M. C. Escher set in the hyperbolic disc; any two fish have the same length
in the hyperbolic metric.
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As in Example 3.5, the hyperbolic and Euclidean metrics have the same
continuous functions, convergent sequences, and open and closed sets, but
one is complete while the other is not.

Similarly, the upper half-space

H = {x = (x1, x2, . . . , xn) ∈ Rn : xn > 0}

is not complete in the Euclidean metric, but is complete in the hyperbolic
metric

d(x,y) = 2 sinh−1 |x− y|
2
√
xnyn

.

It is interesting to check that the sequence (0, 0, . . . , 0, 1
n), which is Cauchy

in the Euclidean metric, is not Cauchy in this metric.
There is a bijection between the ball and the half-space that turns one

hyperbolic metric into the other. Here is the image of Escher’s first print
under that isometry, reproduced from [1]:
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Moreover there are bijections from either the ball or the half-space to the
hyperboloid xn+1 =

√
1 + x21 + . . .+ x2n in Rn+1,

under which the hyperbolic metrics above correspond to the Riemannian
distance function given by the shortest path along the hyperboloid, as
mentioned briefly in Example 1.7.

These hyperbolic spaces are important in differential geometry, complex
analysis, and number theory, and historically in demonstrating the logical
independence of Euclid’s parallel postulate from his other four.

Example 3.8. Given a prime number p, the p-adic metric on Q is defined
as follows. For x, y ∈ Q with x ̸= y, we can write

|x− y| = pv · r
s
,

where v, r, s ∈ Z and r and s are not divisible by p. Then we define dp(x, y) =
p−v, or if x = y then dp(x, y) = 0.∗ Exercise 3.2 asks you to check that this
is a metric and explore some numerical examples.

Convergent sequences in the p-adic metric can look bizarre: for example,
if p = 2, then the sequence

1, 3, 7, 15, . . . , 2n − 1, . . .

converges to −1, because the 2-adic distance between 2n − 1 and −1 is 2−n,
which goes to zero as n → ∞. The metric is not complete: for example, you
could prove by hand that the sequence of partial sums of the series

1 + p+ p4 + p9 + · · ·+ pn
2
+ · · ·

are Cauchy but fail to converge to a limit in Q, or later, after we have proved
the Baire category theorem, we could use it to argue that a complete metric
space containing Q in this metric must be uncountable. The completion of
Q in this metric is called Qp, the p-adic numbers.

∗This is unrelated to the metrics called dp in Examples 1.5 and 1.8.
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I will digress to discuss where the p-adic metric and its completion come
from, but you can skip ahead if you like. They were developed by Hensel,
who wanted to do something in number theory analogous to working on
a power series “order by order.” For example, we can study the equation
f(x)2 = 1− x by looking for a solution of the form

f(x) = a0 + a1x+ a2x
2 + · · · .

Looking at the constant terms, we find that a0 could be 1 or −1. If we
choose a0 = 1, then looking at the linear terms we find that a1 must be
−1

2 , looking at the quadratic terms we find that a2 must be −1
8 , and so

on. (Later we could ask about the convergence of the power series that we
obtain.) Hensel’s idea is that if we want to study an equation like x2 = 2, we
can look for a solution that’s a formal power series in a prime p, say p = 7,

x = a0 + a1 · 7 + a2 · 72 + · · ·

with coefficients ai ∈ {0, 1, . . . , 6}. Again we can work order by order.
Reducing modulo 7, we find that a0 could be 3 or 4, because these are the
two solutions to a20 ≡ 2 (mod 7). If we choose a0 = 3, then reducing modulo
72 = 49 we find that a1 must be 1, reducing modulo 73 = 343 we find that
a2 must be 2, and so on. The sequence of partial sums of the series

3 + 1 · 7 + 2 · 72 + · · ·

is 3, 10, 108, . . . which is not Cauchy in the Euclidean metric – indeed, it
goes to infinity. But it Cauchy is in the 7-adic metric, and the limit in
the completion Qp satisfies x2 = 2. Questions of convergence for the power
series correspond approximately to questions of whether the solution can be
finagled back into Q; this one cannot, because

√
2 is irrational.

An outstanding result in this area is the Hasse-Minkowski theorem,
which states that a homogeneous quadratic equation in several variables,
say x2 − xy + y2 = 3z2, has a solution with coordinates in Q if and only if
it has a solution in R and solutions in Qp for every prime p.

By now we have gotten pretty far from real analysis or topology; the
point is that while most of the examples we’ve considered are more or less
closely related to the Euclidean metric on R, the ideas we’re developing have
applications in radically different mathematical settings.
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Example 3.9. The L1 metric on C([0, 1]) is not complete, as we can see
using the sequence f1, f2, f3, . . . introduced at the beginning of the section:
Exercise 3.1 asks you to prove that it is Cauchy, but let us sketch an
argument that it does not converge to any limit ℓ ∈ C([0, 1]). We see
that the restriction of fn to an interval of the from [0, 12 − δ] converges to
the constant function 0, and the restriction to [12 + δ, 1] converges to the
constant function 1. So if fn converged to a limit ℓ, then ℓ would take the
value 0 on the half-open interval [0, 12), and 1 on (12 , 1], so it could not be
continuous at x = 1/2.

As with Q in R, one can embed C([0, 1]) into a larger set of functions
and extend the L1 metric to a complete metric on that larger set, although
this is far from staightforward. First, one has to to decide which discontin-
uous functions to include, which requires developing the Lebesgue integral.
Second, the step function g that we want to be the limit is not uniquely
determined at x = 1/2: we could set g(1/2) = 0, or g(1/2) = 1, or
g(1/2) = 1/2), or any other value, and

∫
|fn − g| will go to zero in any

case, so one ends up working not with actual functions but with equivalence
classes of functions. You can learn about all this in a course on measure
theory.

While C([0, 1]) is not complete in the L1 metric, the next three propo-
sitions show that it is complete in the sup metric. We continue to assume
the fact that every continuous function on [0, 1] is bounded.

Proposition 3.10. Let (X, d) be a complete metric space, and let Y ⊂ X.
Then Y is complete in the induced metric if and only if Y is closed in X.

Proof. First suppose that Y is closed, and let p1, p2, p3, . . . be a Cauchy
sequence in Y . By definition of the induced metric (Example 1.7), the
sequence is also Cauchy in X, and because X is complete, it converges to a
limit ℓ ∈ X. Because Y is closed, we have ℓ ∈ Y . Thus Y is complete.

Conversely, suppose that Y is complete, and let p1, p2, p3, . . . be a se-
quence in Y that converges to a limit ℓ ∈ X. By Proposition 3.2, the
sequence is Cauchy, so it also converges to a limit ℓ′ ∈ Y . By Exercise 1.9,
we have ℓ = ℓ′, so ℓ ∈ Y . Thus Y is closed.

Proposition 3.11. Let X be a set, let B(X) be the set of bounded functions
f : X → R, and define the sup metric on B(X) by

d(f, g) = sup
p∈X

|f(p)− g(p)|.

makes B(X) into a complete metric space.
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Proof. Let f1, f2, f3, . . . ∈ B(X) be a sequence that is Cauchy in the sup
metric. For each p ∈ X we have |fm(p)−fn(p)| ≤ d(fm, fn), so the sequence
f1(p), f2(p), f3(p), . . . is also Cauchy in the usual metric on R. Because R
is complete, this sequence converges, so we can define a function ℓ : X → R
by ℓ(p) = limn→∞ fn(p).

Let us argue that ℓ ∈ B(X), that is, that ℓ is bounded. Again by
Exercise 3.3, there is an M ∈ R such that d(fn, 0) = sup |fn| ≤ M for all n,
so |fn(p)| ≤ M for all n and all p ∈ X. Letting n → ∞, we get |ℓ(p)| ≤ M
for all p ∈ X, as desired.

Last we argue that fn → ℓ in the sup metric. Let ϵ > 0 be given.
Because the sequence f1, f2, f3, . . . is Cauchy, there is an N such that if
m,n ≥ N then d(fm, fn) < ϵ/2, so |fm(p) − fn(p)| < ϵ/2 for all p ∈ X.
Letting m → ∞, we get |ℓ(p) − fn(p)| ≤ ϵ/2 for all n ≥ N and all p ∈ X.
Thus d(ℓ, fn) ≤ ϵ/2 < ϵ.

Proposition 3.12. Continue to let B(X) denote the set of bounded func-
tions on a set X with the sup metric d. For any metric dX on X, the set of
bounded, continuous functions is closed in B(X).

Proof. Let f1, f2, f3, . . . be a sequence of bounded, continuous functions
converging in the sup metric to a bounded function ℓ. We want to prove
that ℓ is continuous.

Let p ∈ X and ϵ > 0 be given. Because fn → ℓ in the sup metric,
there is an N such that if n ≥ N then sup |fn − ℓ| < ϵ/3, and in particular
|fN − ℓ| < ϵ/3. Because fN is continuous, there is a δ > 0 such that if
dX(p, q) < δ then |fN (p)− fN (q)| < ϵ/3. Thus if dX(p, q) < δ then

|ℓ(p)− ℓ(q)|
≤ |ℓ(p)− fN (p)|+ |fN (p)− fN (q)|+ |fN (q)− ℓ(q)|

< ϵ/3 + ϵ/3 + ϵ/3 = ϵ,

where the first inequality is the triangle inequality in R.

Why completeness? You might ask why we care whether a metric space
is complete. One major reason is the Banach fixed-point theorem, also
called the contraction mapping theorem, which we prove next. It is crucial
to proving the existence and uniqueness of solutions to ordinary differential
equations, the inverse function theorem, and the implicit function theorem.
Another reason is the Baire category theorem, to which we will return later.
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Theorem 3.13 (Banach fixed-point theorem). Let (X, d) be a complete
metric space, let f : X → X, and suppose there is a “Lipschitz constant”
r ∈ [0, 1) such that for all p, q ∈ X we have

d(f(p), f(q)) ≤ r · d(p, q). (3.2)

Then f has a unique fixed point, that is, there is a unique point p ∈ X such
that f(p) = p.

We can see that it is really necessary to have r < 1: if X = R with the
usual metric, then a translation like f(x) = x+ 1 satisfies (3.2) with r = 1,
but it has no fixed point.

Proof of Theorem 3.13. Uniqueness is easy: if f(p) = p and f(q) = q, then
then

d(p, q) = d(f(p), f(q)) ≤ r · d(p, q),

so d(p, q) = 0, so p = q.
For existence, choose any point p0 ∈ X, and define a sequence of points

by repeatedly applying f :

p1 = f(p0) p2 = f(p1) p3 = f(p2) . . . .

Let us argue that this sequence is Cauchy.
Set

D = d(p0, p1).

Then we have

d(p1, p2) = d(f(p0), f(p1)) ≤ r · d(p0, p1) = rD,

and
d(p2, p3) = d(f(p1), f(p2)) ≤ r · d(p1, p2) = r2D,

and similarly
d(pn, pn+1) ≤ rnD.

If we have some integer N and n ≥ m ≥ N , then by the triangle
inequality,

d(pm, pn) ≤ d(pm, pm+1) + d(pm+1, pm+2) + · · ·+ d(pn−1, pn)

≤ rmD + rm+1D + · · ·+ rn−1D =
rm − rn

1− r
·D ≤ rN

1− r
·D,
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where in the third step we have summed a geometric series.
Now let ϵ > 0 be given. Because r < 1, we can choose an integer N such

that
rN

1− r
·D < ϵ,

so if m,n ≥ N then d(pm, pn) < ϵ. Thus the sequence is Cauchy, as claimed.
Because the metric is complete, there is an ℓ ∈ X such that pn → ℓ. It

remains to prove that f(ℓ) = ℓ. Exercise 3.4 asks you to prove that f is
continuous. Thus it preserves limits by Exercise 1.11, and we can write

f(ℓ) = f
(
lim
n→∞

pn

)
= lim

n→∞
f(pn) = lim

n→∞
pn+1 = ℓ.

To give an idea of the power of the Banach fixed-point theorem, I’ll
digress to sketch the proof of existence of solutions to ordinary differential
equations, but again you can skip ahead if you like. To take a concrete
example, the motion of a pendulum in R2 is described by

x′(t) = y(t) y′(t) = −y(t)− sin(x(t)),

which cannot be solved explicitly. Repackage this as follows: let F : R2 → R2

be given by F (x, y) = (y,−y− sin(x)), and let f : [0, 1] → R2 be the vector-
valued function whose components are x(t) and y(t); then we want to solve
f ′(t) = F (f(t)) with some initial condition f(0) = C ∈ R2. (Any ordinary
differential equation, including higher-order ones, can be packaged like this.)

Using the fundamental theorem of calculus, we can rewrite the differen-
tial equation f ′(t) = F (f(t)) as an integral equation

f(t) = C +

∫ t

0
F (f(s)) ds,

and observe that a solution is the same as a point f ∈ C([0, 1])2 that’s a fixed
point of the map Φ from C([0, 1])2 to itself given by Φ(f) = C+

∫ t
0 F (f(s)) ds.

Using the fact that F is continuously differentiable, we can do some serious
analysis and cook up a Lipschitz constant r for Φ as in (3.2); then the
Banach fixed-point theorem gives a solution to our differential equation.

Moreover, the proof of the theorem yields a good algorithm for solving
differential equations numerically: start with a constant function f(t) = C,
and hit it with Φ over and over until you get close enough to a solution.
You can learn about this in a course in differential equations or numerical
methods, but for now let me just say that it is fun to see how applying this
method to the differential equation y′ = y yields the power series for ex.

27



Completion. We conclude this section by sketching how every metric
space (X, dX) can be embedded into a complete metric space (X̄, dX̄). In
examples, we usually have a more concrete way to construct the completion
– we can construct R via Dedekind cuts, or Qp via formal Laurent series
in p, or Lp([0, 1]) via Lebesgue integrable functions – but it is reassuring to
know that a completion exists in any abstract situation.

We define X̄ to be the set of equivalence classes of Cauchy sequences in
X, where the equivalence relation is

{pn} ∼ {p′n} ⇐⇒ lim
n→∞

dX(pn, p
′
n) = 0. (3.3)

Then we define
dX̄({pn}, {qn}) = lim

n→∞
dX(pn, qn). (3.4)

There are many things to check:

(a) The relation (3.3) is an equivalence relation:

� Reflexive: {pn} ∼ {pn}.
� Symmetric: if {pn} ∼ {p′n} then {p′n} ∼ {pn}.
� Transitive: if {pn} ∼ {p′n} and {p′n} ∼ {p′′n} then {pn} ∼ {p′′n}.

(b) The limit in (3.4) always exists.

(c) The function dX̄ defined in (3.4) is well-defined with respect to the
equivalence relation (3.3): that is, if {pn} ∼ {p′n} and {qn} ∼ {q′n},
then

dX̄({pn}, {qn}) = dX̄({p′n}, {q′n}).

(d) The function dX̄ defined in (3.4) is a metric, with the three properties
given in Definition 1.2.

(e) The metric dX̄ on X̄ is complete.

(f) While X̄ does not literally contain X as a subset, the map i : X → X̄
that sends a point p to the constant sequence p, p, p, . . . preserves
distances, so it identifies X with subset of X̄.

(g) X̄ is the smallest complete set that contains X, in the following sense:
if (Y, dY ) is a complete metric space and j : X → Y is a distance-
preserving map, then there is a unique distance-preserving map
ȷ̄ : X̄ → Y such that ȷ̄ ◦ i = j.
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Many of these are straightforward to prove: for example, for (c) we can
write

dX̄({pn}, {qn}) = lim
n→∞

dX(pn, qn)

≤ lim
n→∞

(
dX(pn, p

′
n) + dX(p′n, q

′
n) + dX(qn, q

′
n)
)

= 0 + dX̄({p′n}, {q′n}) + 0,

where the second step used the triangle inequality, and similarly

dX̄({p′n}, {q′n}) ≤ dX̄({pn}, {qn}),

so the two are equal. Exercise 3.5 asks you to prove (b). Here is a complete
proof of (e), which is much harder than the others, but also terribly boring.

Proof of (e). Suppose we are given a Cauchy sequence in X̄, that is, a
Cauchy sequence of Cauchy sequences in X, where the second “Cauchy”
is with respect to dX and the first is with respect to dX̄ . Let the first
sequence be called p1,1, p1,2, p1,3, . . . , the second p2,1, p2,2, p2,3, . . . , and so
on. We must construct a sequence q1, q2, . . . ∈ X, prove that it is Cauchy
with respect to dX , and prove that our sequence of sequences converges to
it with respect to dX̄

First let us define qk. Because the sequence pk,1, pk,2, pk,3, . . . is Cauchy
with respect to dX , we can apply the definition of Cauchy with ϵ = 1/k and
get an integer Nk such that if m,n ≥ Nk then dX(pk,m, pk,n) < 1/k. Then
we set qk = pk,Nk

.
Next let us argue that the sequence q1, q2, q3, . . . is Cauchy with respect

to dX . Let ϵ > 0 be given. Because the sequence {p1,n}, {p2,n}, {p3,n}, . . . ∈
X̄ is Cauchy with respect to dX̄ , there is an integer K such that if k, l ≥ K
then

dX̄(pk,n, pl,n) < ϵ/3. (3.5)

Moreover we can increase K if necessary to get 1/K < ϵ/3. Fix some
k, l ≥ K. Recalling the definition of dX̄ from (3.4), we see that (3.5) says
that there is an integer N such that if n ≥ N then

dX(pk,n, pl,n) < ϵ/3.

Set n = max(Nk, Nl, N). Then we have

dX(qk, ql) = dX(pk,Nk
, pl,Nl

)

≤ dX(pk,Nk
, pk,n) + dX(pk,n, pl,n) + dX(pl,n, pl,Nl

)

< 1/k + ϵ/3 + 1/l ≤ 1/K + ϵ/3 + 1/K < ϵ/3 + ϵ/3 + ϵ/3 = ϵ,
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as desired.
Finally let us argue that {p1,n}, {p2,n}, {p3,n}, . . . → {qn} with respect

to dX̄ . Let ϵ > 0 be given. Because {qn} is Cauchy with respect to dX ,
there is an integer K such that if k, l ≥ K then dX(qk, ql) < ϵ/2. Increase
K if necessary to get 1/K < ϵ/2. If k ≥ K then

dX̄({pk,n}, {qn}) = lim
n→∞

dX(pk,n, qn) ≤ lim
n→∞

dX(pk,n, qk) + lim
n→∞

dX(qk, qn)

The first term is
lim
n→∞

dX(pk,n, pk,Nk
),

where Nk is the one we chose in the previous paragraph; by construction,
if n ≥ Nk then dX(pk,n, pk,Nk

) < 1/k, so the limit is ≤ 1/k < ϵ/2. For the
second term, if n ≥ K then dX(qk, qn) < ϵ/2, so the limit is ≤ ϵ/2. Thus
the sum is < ϵ, as desired.

Exercises.

3.1. Prove that the sequence of piecewise-linear functions f1, f2, f3, . . . ∈
C([0, 1]) introduced at the beginning of the section is Cauchy in the
L1 metric.

3.2. Let X = Q, let p be a prime number, and let dp be the p-adic meric
defined in Example 3.8.

(a) Write down some rational numbers, and compute the 2-adic dis-
tance between them.

(b) Prove that dp is a metric.

(c) Consider a “formal power series” in p,

a0 + a1p+ a2p
2 + a3p

3 + · · · ,

where the coefficients an are integers with 0 ≤ an < p. Let
s0, s1, s2, . . . ∈ Z be the sequence of partial sums of this series.
Prove that it is Cauchy in the p-adic metric.
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3.3. Let p1, p2, p3, . . . be a Cauchy sequence in a metric space (X, d).
Prove that the sequence is bounded, meaning that there is a point
q ∈ X and a radius R > 0 such that pn ∈ BR(q) for all n. In fact, for
any q ∈ X you can find such a radius R, and in particular for X = R
you can take q = 0.

Hint: Start by applying the definition of Cauchy with ϵ = 1 to get
an N such that if m,n ≥ N then d(pm, pn) < 1, and in particular
d(pN , pn) < 1.

3.4. Let (X, d) be a metric space, let f : X → X, suppose there is a
“Lipschitz constant” r ∈ [0, 1) such that for all p, q ∈ X we have

d(f(p), f(q)) ≤ r · d(p, q).

Prove that f is continuous.

Hint: Take δ = ϵ.

3.5. Prove item (b) from the laundry list of things to check about the
completion of a metric space: if {pn} and {qn} are Cauchy sequences
in X, then the limit

lim
n→∞

dX(pn, qn)

exists.

Hint: Prove that dX(pn, qn) is a Cauchy sequence in R with its usual
metric. The reverse triangle inequality (Exercise 1.5) may be useful.

4 Interior, Closure, and Boundary

Let (X, d) be a metric space, and consider a subset A ⊂ X.

Definition 4.1. The interior of A, denoted intA or sometimes A◦, is

{p ∈ X : Br(p) ⊂ A for some r > 0}.

We see that intA ⊂ A, and the two are equal if and only if A is open.

Definition 4.2. The closure of A, denoted Ā or sometimes clA, is

{p ∈ X : there is a sequence a1, a2, a3, . . . ∈ A that converges to p}.

We see that A ⊂ Ā, and the two are equal if and only if A is closed.
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Definition 4.3. The boundary of A, denoted ∂A, is Ā \ intA.

Example 4.4. Let X = R2 with the Euclidean metric, and let A be the
half-open disc shown below:

A

The interior is the open disc x2 + y2 < 1. The closure is the closed disc
x2 + y2 ≤ 1. The boundary is the unit circle x2 + y2 = 1.

intA Ā ∂A

Example 4.5. The interior, closure, and boundary very much depend on
the ambient space: if we make the ambient X bigger or smaller, then they
will change. For example, if we take A = [0, 1] inside R with the usual
metric,

then the interior is the open interval (0, 1), the closure is the same as A, and
the boundary is the two points 0 and 1. But if we take it in R2 with the
Euclidean metric as shown,

then the interior is empty, the closure is the same as A, and the boundary
is also the same as A.

Example 4.6. Let X = R with the usual metric, and let A = Q. Then the
interior of A is empty, the closure is all of R, and the boundary is all of R.
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Here is another characterization of the closure:

Proposition 4.7. Let (X, d) be a metric space, and let A ⊂ X.

Ā = {p ∈ X : Br(p) ∩A ̸= ∅ for all r > 0}.

Proof. First suppose that p ∈ Ā, and let a1, a2, a3, . . . be a sequence in A
that converges to p. Then for every r > 0 there is an N such that if n ≥ N
then d(an, p) < r. Thus Br(p) ∩A contains aN , so it is not empty.

Conversely, suppose that Br(p) ∩ A is not empty for all r > 0. For
n = 1, 2, 3, . . . , take r = 1/n, and choose a point an ∈ B1/n(p) ∩ A. Then
the sequence a1, a2, a3, . . . converges to p so p ∈ Ā.

Proposition 4.8. The complement of the interior is the closure of the
complement, and vice versa: that is, if (X, d) is a metric space and A ⊂ X,
then

X \ intA = X \A and X \ Ā = int(X \A).

Proof. The two claims are equivalent: replacing A with X \ A turns one
into the other. To prove the first equality, observe that each of the following
statements is equivalent to the next:

� p ∈ X \ intA.

� p /∈ A.

� Br(p) ̸⊂ A for all r > 0.

� Br(p) ∩ (X \A) ̸= 0 for all r > 0.

� p ∈ X \A.

Here the last step used Proposition 4.7.

Corollary 4.9. Let (X, d) be a metric space and A ⊂ X. Then

∂A = ∂(X \A) = Ā ∩X \A.

Here are some basic properties of interiors. Exercise 4.2 asks you to
prove the analogous properties of closures.

Proposition 4.10. Let (X, d) be a metric space, and let A,B ⊂ X.

(a) intA is open.
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(b) intA is the biggest open set contained in A, in the following sense: if
U ⊂ X is open and U ⊂ A, then U ⊂ intA.

(c) If A ⊂ B then intA ⊂ intB.

(d) int(A ∩B) = intA ∩ intB.

(e) intA ∪ intB ⊂ int(A ∪ B), but Example 4.11 below shows that the
inclusion can be strict.

Proof. (a) By definition, for every p ∈ intA there is an r > 0 such that
Br(p) ⊂ A. Let us argue that Br(p) ⊂ intA, which will prove that
intA is open. This is very similar to the proof that an open ball is
open in Exercise 2.5(a).

So we need to prove that for every q ∈ Br(p), there is an s > 0
such that Bs(q) ⊂ A. Take s = r − d(p, q), which is positive because
d(p, q) < r. If q′ ∈ Bs(Q) then

d(p, q′) ≤ d(p, q) + d(q, q′) < d(p, q) + s = r,

so q′ ∈ Br(p), so q′ ∈ A.

(b) Let p ∈ U . Because U is open, then there is an r > 0 such that
Br(p) ⊂ U . Because U ⊂ A, we have Br(p) ⊂ A. Thus p ∈ intA.

(c) We have intA ⊂ A ⊂ B, and intA is open by part (a), so intA ⊂ intB
by part (b).

(d) We have A ∩ B ⊂ A, so int(A ∩ B) ⊂ intA by part (c), and similarly
int(A ∩B) ⊂ intB; thus int(A ∩B) ⊂ intA ∩ intB.

For the reverse inclusion, we have intA ∩ intB ⊂ intA ⊂ A, and
intA∩ intB ⊂ intB ⊂ B, so intA∩ intB ⊂ A∩B. But intA∩ intB is
an intersection of two open sets by part (a), hence is open by Exercise
2.6(a), so intA ∩ intB ⊂ int(A ∩B) by part (b).

(e) We have intA ⊂ A ⊂ A∪B, and intB ⊂ B ⊂ A∪B, so intA∪ intB ⊂
A ∪B. Thus intA ∪ intB ⊂ int(A ∪B) by part (c).

Example 4.11. It need not be true that intA ∪ intB = int(A ∪ B). For
example, let X = R with the usual metric, let A = [0, 1], and let B = [1, 2],
so A ∪ B = [0, 2]. Then int(A ∪ B) = (0, 2) is bigger than intA ∪ intB =
(0, 1) ∪ (1, 2).

A B
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Exercises.

4.1. Find the closure, interior, and boundary of each subset of R2 in the
Euclidean topology:

(a) A1 = {(x, y) : 0 < x ≤ 1, 0 ≤ y < 1}

(b) A2 = {(x, y) : 0 < x ≤ 1, y = 0}

(c) A3 = {(x, y) : x ∈ Q or y ∈ Q}

(d) The subset A from Exercise 2.1.

4.2. Prove the analogue of Proposition 4.10 for closures without using
Proposition 4.8. For (c), (d), and (e) especially, you’ll want to follow
the proof Proposition 4.10 closely.

(a) Ā is closed.

Hint: It’s easier to use Proposition 4.7.

(b) Ā is the smallest closed set contained in A, in the following sense:
if F ⊂ X is closed and A ⊂ F , then Ā ⊂ F .

(c) If A ⊂ B then Ā ⊂ B̄.

(d) A ∪B = Ā ∪ B̄.

(e) A ∩B ⊂ Ā ∩ B̄. Give an example to show that the inclusion can
be strict.

4.3. Exercise 2.5 asked you to prove that the open ball Br(p) is open, and
the closed ball B̄r(p) is closed. Thus Br(p) ⊂ int B̄r(p) by Proposition
4.10(b), and Br(p) ⊂ B̄r(p) by Exercise 4.2(b). But give an example
to show that the inclusions can be strict.

Hint: You might take X = Z with the usual metric inherited from R,
or any set with a discrete metric (Exercise 1.8).
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