
Solutions to Final Exam

1. (a) (3 points) State the Baire category theorem, either for complete metric
spaces or for locally compact Hausdorff spaces.

(In either case there are two good answers.)

Solution: A countable union of nowhere dense sets has empty interior, or
equivalently, a countable intersection of dense, open sets is again dense.

(b) (3 points) A point p in a topological space X is isolated if the one-point
set {p} is open. Give an example of a topological space with at least one
isolated point and at least one non-isolated point.

Solution: Of course there are many possible answers. You might take
[0, 1] ∪ {2, 3, 4, . . . } with the subspace topology from the usual topology
on R: the points 2, 3, 4, . . . are all isolated, while the points in [0, 1] are
not. Or you might take

W = {1, 1
2
, 1
3
, 1
4
, . . . , 0},

again with the subspace topology from the usual topology on R: every
point is isolated except for 0.

(c) (3 points) Do whichever one that goes best with your answer to part (a):

(c1) Prove that p ∈ X is not isolated if and only if X \ {p} is dense in X.
Solution: By definition, X \ {p} is dense if and only if its closure is
all of X. The closure is the smallest closed set containing X \ {p},
and the only two sets containing X \ {p} are X \ {p} itself and the
whole space X, which is always closed. Thus the closure is X if and
only if X \ {p} is not closed, which is true if and only if {p} is not
open.
Alternatively, X \ {p} is dense if and only if it intersects every non-
empty open set. The only non-empty set that it doesn’t intersect is
{p}, so it’s dense if and only if {p} is not open.



(c2) Prove that p ∈ X is not isolated and only if and only if the one-point
set {p} is nowhere dense.
Solution: By definition, {p} is nowhere dense if and only if its interior
is empty. The interior is the biggest open set contained in {p}, and
the only two sets contained in {p} are {p} itself and ∅, which is
always open. Thus the interior is ∅ if and only if {p} is not open.

(d) (3 points) Let X be a non-empty topological space with no isolated points.
Use the Baire category theorem to prove that if X admits a complete
metric, or is locally compact and Hausdorff, then X is uncountable.

Solution: Depending on your answer to parts (a) and (c), you’ll prefer
one of these two:

We can write X =
⋃

p∈X{p}. Because X has no isolated points, each
one-point set {p} is nowhere dense by part (c1). If X were countable then
the Baire category theorem would say that the interior of X is empty; but
X is open, so its interior is X, which we have assumed is not empty.

Alternatively, we see that
⋂

p∈X(X \{p}) = ∅. Because X has no isolated
points, each X \{p} is dense in X, and because we’re in a Hausdorff space,
points are closed, so X \ {p} is open. If X were countable then the Baire
category theorem would say that this intersection of open dense sets is
dense; but if X is not empty then ∅ is not dense in X.

2. The point of this problem is to prove that X × Y is Hausdorff if and only if X
is Hausdorff and Y is Hausdorff.

(a) (3 points) Define the product topology: if X and Y are topological spaces,
then a subset W ⊂ X × Y is open if and only if . . .

(Fill in the blank. There are two good answers.)

Solution: You could either say that W =
⋃

i∈I Ui×Vi for some open sets
Ui ⊂ X and Vi ⊂ Y , or that for every (x, y) ∈ W there are open sets
U ⊂ X and V ⊂ Y with (x, y) ∈ U × V ⊂ X × Y .

(b) (3 points) Define what it means for a topological space X to be Hausdorff.

Solution: Distinct points have disjoint neighborhoods: for any two points
p, q ∈ X with p ̸= q, there are open sets U, V ⊂ X with p ∈ U , q ∈ V ,
and U ∩ V = ∅.



(c) (4 points) Give an example of a topology on R that is Hausdorff, and a
topology on R that is not Hausdorff.

Solution: You only need two examples, but I’ll run through all the topolo-
gies we’ve seen on R.
Hausdorff:

� The usual topology, coming from the metric d(x, y) = |x− y|.
� The lower limit topology, where the open subsets are unions of half-
open intervals [a, b).

� The discrete topology, where every subset is open.

Not Hausdorff:

� The lower semi-continuous topology, where the open sets are ∅, R,
and (a,∞) for any a ∈ R.

� The finite complement topology, where U ⊂ R is open if and only if
R \ U is finite or U = ∅.

� The particular point topology, where U ⊂ R is open if and only if
0 ∈ U or U = ∅.

� The indiscrete topology: the only open sets are ∅ and R.
(d) (3 points) Let X and Y be Hausdorff spaces. Prove that the product

topology on X × Y is Hausdorff.

Solution: Let (x, y) and (x′, y′) be points of X × Y . If (x, y) ̸= (x′, y′),
then either x ̸= x′ or y ̸= y′ (or both). If x ̸= x′, choose open sets
U,U ′ ⊂ X such that x ∈ U , x′ ∈ U ′, and U ∩ U ′ = ∅. Then U × Y and
U ′ × Y are disjoint neighborhood of (x, y) and (x′, y′) in X × Y . If y ̸= y′

then the argument is similar.

(e) (3 points) LetX and Y be non-empty topological spaces, and suppose that
the product topology on X×Y is Hausdorff. Prove that X is Hausdorff.



Hint: Given two distinct points x, x′ ∈ X, choose a point y ∈ Y , and
consider the points (x, y) and (x′, y) in X × Y .

Solution: Given two distinct points x, x′ ∈ X, choose a point y ∈ Y ,
which is possible because we assumed that Y is not empty, and consider
the points (x, y) and (x′, y) in X × Y . Because X × Y is Hausdorff,
there are open sets W,W ′ ⊂ X × Y such that (x, y) ∈ W , (x′, y) ∈ W ′,
and W ∩ W ′ = ∅. By the definition of the product topology, there are
open sets U,U ′ ⊂ X and V, V ′ ⊂ Y such that (x, y) ∈ U × V ⊂ W and
(x′, y) ∈ U ′ × V ′ ⊂ W ′. Thus x ∈ U , x′ ∈ U ′, and U ∩ U ′ = ∅; to justify
the last assertion, you could say that if x′′ ∈ U ∩U ′ then (x′′, y) is in both
U × V and U ′ × V ′, thus in both W and W ′, which is impossible because
W ∩W ′ = ∅.

(f) (1 point) Write “Similarly, if X × Y is Hausdorff then Y is Hausdorff.”

Solution: Similarly, if X × Y is Hausdorff then Y is Hausdorff.

3. Let (X, d) be a metric space. A map f : X → X is called a weak contraction
mapping if

d(f(x), f(y)) < d(x, y)

for all x, y ∈ X, while a contraction mapping if there is an r ∈ [0, 1) such that

d(f(x), f(y)) ≤ r · d(x, y)

for all x, y ∈ X. Earlier in the term we proved the Banach fixed point theorem:
if X is complete and f : X → X is a contraction mapping, then there is a
unique point x ∈ X such that f(x) = x. This problem asks you to prove that
if X is compact, then any weak contraction mapping is a contraction mapping.

(a) (3 points) Let Y be a topological space. Define an open over of a subset
A ⊂ Y , and a subcover. Define what it means for A to be compact.

Solution: An open cover of A is a collection of open sets Ui ⊂ X, indexed
by a set I, whose union

⋃
i∈I Ui contains A. Extracting subcover means

choosing a subset J ⊂ I such that the union
⋃

j∈J Uj still contains A. To
say that A is compact means that every open cover has a finite subcover.



(b) (3 points) Let X be a metric space, let f : X → X be continuous, and let
s ≥ 0. Prove that the set

Us = {(x, y) ∈ X ×X : d(f(x), f(y)) < s · d(x, y)}
is open in X × X. You may assume without proof that the metric d is
continuous as a map from X × X with the product topology to R with
the usual topology.

Hint: Cook up a map F : X × X → R2 such that Us is the preimage of
the open set

Vs = {(z, w) ∈ R2 : z < s · w},
then prove that F is continuous.

Solution: Take the map F : X ×X → R2 given by

F (x, y) = (d(f(x), f(y)), d(x, y)).

If Vs ⊂ R2 is the open subset suggested in the hint, then we see that
Us = F−1(Vs), so if we prove that F is continuous then Us will be open.

There are several ways to argue that F is continuous; here is a very terse
one. We have seen that a map into a product is continuous if and only if
its components are continuous, and that the projections p, q : X×X → X
onto the first and second factors are continuous, and we are assuming that
d : X ×X → R is continuous. The second factor of F is d, and the first is
d ◦ ((f ◦ p)× (f ◦ q)).

(c) (3 points) Let X be a compact metric space, and let f : X → X be a weak
contraction mapping. Prove that f is actually a contraction mapping.

Hint: Consider the open cover of X ×X given by Us for all s ∈ [0, 1).

Solution: Perhaps we should argue that f is continuous, but that’s not
hard: take δ = ϵ. I don’t mind if you skip this step.

Now because f is a weak contraction mapping, we see that

X ×X =
⋃

s∈[0,1)

Us.

Because X is compact, the product X ×X is compact, so we can extract
a finite subcover: that is, there are s1, . . . , sn ∈ [0, 1) such that X ×X =
Us1 ∪ · · · ∪ Usn . Let r = max(s1, . . . , sn), and observe that r < 1. Then
X ×X = Ur, so we have

d(f(x), f(y)) < r · d(x, y)
for all x and y in X, which is stronger than what we need.


