Solutions to Homework 1

1.1. (a) For each of the three metrics in Example 1.4, sketch the open ball of some radius $r > 0$ around the origin in \mathbb{R}^2 :

$$
B_r(0) = \{(x, y) \in \mathbb{R}^2 : d((x, y), 0) < r\}.
$$

Solution:

(b) For one of the three metrics (your choice), prove or give a counterexample to the following statement: a sequence of points (x_1, y_1) , $(x_2, y_2), (x_3, y_3), \ldots \in \mathbb{R}^2$ converges to a limit (x, y) if and only if $x_n \to x$ and $y_n \to y$ separately, as sequences in R with the usual metric.

Solution: The statement is true in all three metrics.

First suppose that $x_n \to x$ and $y_n \to y$ separately. Let $\epsilon > 0$ be given. Choose an integer N_1 such that $|x_n - x| < \epsilon/2$ for all $n \geq N_1$, and an integer N_2 such that $|y_n - y| < \epsilon/2$ for all $n \geq N_2$. Let $N = \max\{N_1, N_2\}$, and suppose that $n \geq N$. In the taxicab metric, we have

$$
d_1((x_n, y_n), (x, y)) = |x_n - x| + |y_n - y| < (\epsilon/2) + (\epsilon/2) = \epsilon.
$$

In the Euclidean metric, we have

$$
d_2((x_n, y_n), (x, y)) = \sqrt{|x_n - x|^2 + |y_n - y|^2} < \sqrt{(\epsilon/2)^2 + (\epsilon/2)^2} = \epsilon \cdot \sqrt{2}/2 < \epsilon.
$$

In the square metric, we have

$$
d_{\infty}((x_n, y_n), (x, y)) = \max\{|x_n - x|, |y_n - y|\} < \epsilon/2 < \epsilon.
$$

Thus $(x_n, y_n) \rightarrow (x, y)$ in all three metrics.

Conversely, suppose that $(x_n, y_n) \rightarrow (x, y)$ in any of the three metrics. In the taxicab metric we have

$$
|x_n - x| \le |x_n - x| + |y_n - y| = d_1((x_n, y_n), (x, y)).
$$

In the Euclidean metric we have

$$
|x_n-x|=\sqrt{(x_n-x)^2}\leq \sqrt{|x_n-x|^2+|y_n-y|^2}=d_2((x_n,y_n),(x,y)).
$$

In the square metric we have

$$
|x_n - x| \le \max\{|x_n - x|, |y_n - y|\} = d_{\infty}((x_n, y_n), (x, y)).
$$

The right-hand sides go to zero as $n \to \infty$, so $|x_n - x| \to 0$ as well, so $x_n \to x$. Similarly $y_n \to y$.

1.3. Consider the following silly metric on \mathbb{R}^2 :

$$
d((x_1, y_1), (x_2, y_2)) = \begin{cases} |y_1 - y_2| & \text{if } x_1 = x_2 \\ |y_1 - y_2| + 1 & \text{if } x_1 \neq x_2. \end{cases}
$$

(a) Prove that d is a metric, that is, it satisfies the three axioms. **Solution:** Clearly d is symmetric, $d(p, p) = 0$, and $d(p, q) > 0$ if $p \neq q$. It remains to check the triangle inequality:

$$
d(p,q) \le d(p,r) \ge d(r,q).
$$

Write $p = (x_1, y_1), r = (x_2, y_2),$ and $q = (x_3, y_3)$. If $x_1 = x_3$ then we have

$$
d(p,r) + d(r,q) \ge |y_1 - y_2| + |y_2 - y_3| \ge |y_1 - y_3| = d(p,q).
$$

If $x_1 \neq x_3$ then either $x_1 \neq x_2$ or $x_2 \neq x_3$ or both. In any case we have

 $d(p, r) + d(r, q) \ge |y_1 - y_2| + |y_2 - y_3| + 1 \ge |y_1 - y_3| + 1 = d(p, q).$

(b) Sketch the open balls of radius 1/2, 1, and 2 around the origin in this metric.

(c) Give an example of a sequence that converges in the Euclidean metric d_2 but not in our silly metric d .

Solution: Let $p_n = (\frac{1}{n}, 0)$. In the Euclidean metric we have $p_n \to (0, 0)$ by problem 1.1(b) above. If it converged in the silly metric, say to a limit ℓ , then there would be an N such that $n \geq N$ implies $d(p_n, \ell) < 1/2$. In particular, we would have

 $d(p_N, p_{N+1}) \leq d(p_N, \ell) + d(\ell, p_{N+1}) < 1/2 + 1/2 = 1,$

but in fact $d(p_m, p_n) = 1$ whenever $m \neq n$.

(In the terms of the next section, the sequence is not even Cauchy in the silly metric.)

(d) Show that every sequence that converges in d converges d_2 .

Solution: Let $p_n = (x_n, y_n)$ be a sequence converging to a limit $\ell = (x, y)$ in the silly metric d. We want to show that $p_n \to \ell$ in the Euclidean metric d_2 .

Let $\epsilon > 0$ be given. Because $p_n \to \ell$ in d, there is an N such that $d(p_n, \ell) < \min(\epsilon, 1)$ for all $n \geq N$. Because $d(p_n, \ell) < 1$, we must have $x_n = x$, so

$$
d_2(p_n, \ell) = \sqrt{(x_n - x)^2 + (y_n - y)^2} = |y_n - y| = d(p_n, \ell) < \epsilon.
$$

1.11. Let (X, d_X) and (Y, d_Y) be metric spaces, let p_1, p_2, p_3, \ldots be a sequence that converges to a point ℓ in X, and let $f: X \to Y$ be continuous at ℓ . Prove that the sequence $f(p_1), f(p_2), f(p_3), \ldots$ converges to $f(\ell)$ in Y.

Solution: Let $\epsilon > 0$ be given. Because f is continuous at ℓ , there is a $\delta > 0$ such that $d_Y(f(p_n), f(\ell)) < \epsilon$ whenever $d_X(p_n, \ell) < \delta$. Because p_n converges to ℓ , there is an integer N such that $d_X(p_n, \ell) < \delta$ for all $n \geq N$. Thus $d_Y(f(p_n), f(\ell)) < \epsilon$ for all $n \geq N$.

1.4. (Optional.) In Example 1.8(a) we saw a sequence in $C([0, 1])$ that converges in the L^1 metric but not in the sup metric. Prove that the reverse cannot happen: every sequence that converges in the sup metric converges in the L^1 metric.

Solution: First I claim that for any $f, g \in C([0, 1])$ we have $d_1(f, g) \leq$ $d_{\infty}(f, g)$. To see this, set

$$
M = \sup_{x \in [0,1]} |f(x) - g(x)|.
$$

Then $|f(x) - g(x)| \leq M$ for all $x \in [0, 1]$, so

$$
d_1(f,g) = \int_0^1 |f(x) - g(x)| dx \le \int_0^1 M dx = M = d_{\infty}(f,g).
$$

Now suppose we have a sequence f_1, f_2, f_3, \ldots that converges in the sup metric to a limit g. Let $\epsilon > 0$ be given, and choose an N such that $n \geq N$ implies $d_{\infty}(f_n, g) < \epsilon$; then $n \geq N$ also implies that $d_1(f_n, g) < \epsilon$. Thus the sequence converges to g in the L^1 metric as well.