
Solutions to Homework 1

1.1. (a) For each of the three metrics in Example 1.4, sketch the open ball
of some radius r > 0 around the origin in R2:

Br(0) = {(x, y) ∈ R2 : d((x, y), 0) < r}.

Solution:

d2: d1: d∞:

(b) For one of the three metrics (your choice), prove or give a counter-
example to the following statement: a sequence of points (x1, y1),
(x2, y2), (x3, y3), . . . ∈ R2 converges to a limit (x, y) if and only if
xn → x and yn → y separately, as sequences in R with the usual
metric.

Solution: The statement is true in all three metrics.

First suppose that xn → x and yn → y separately. Let ϵ > 0
be given. Choose an integer N1 such that |xn − x| < ϵ/2 for all
n ≥ N1, and an integer N2 such that |yn−y| < ϵ/2 for all n ≥ N2.
Let N = max{N1, N2}, and suppose that n ≥ N . In the taxicab
metric, we have

d1((xn, yn), (x, y)) = |xn − x|+ |yn − y| < (ϵ/2) + (ϵ/2) = ϵ.

In the Euclidean metric, we have

d2((xn, yn), (x, y)) =
p
|xn − x|2 + |yn − y|2

<
p
(ϵ/2)2 + (ϵ/2)2 = ϵ ·

√
2/2 < ϵ.
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In the square metric, we have

d∞((xn, yn), (x, y)) = max{|xn − x|, |yn − y|} < ϵ/2 < ϵ.

Thus (xn, yn) → (x, y) in all three metrics.

Conversely, suppose that (xn, yn) → (x, y) in any of the three
metrics. In the taxicab metric we have

|xn − x| ≤ |xn − x|+ |yn − y| = d1((xn, yn), (x, y)).

In the Euclidean metric we have

|xn−x| =
p
(xn − x)2 ≤

p
|xn − x|2 + |yn − y|2 = d2((xn, yn), (x, y)).

In the square metric we have

|xn − x| ≤ max{|xn − x|, |yn − y|} = d∞((xn, yn), (x, y)).

The right-hand sides go to zero as n → ∞, so |xn − x| → 0 as
well, so xn → x. Similarly yn → y.

1.3. Consider the following silly metric on R2:

d((x1, y1), (x2, y2)) =

(
|y1 − y2| if x1 = x2

|y1 − y2|+ 1 if x1 ̸= x2.

(a) Prove that d is a metric, that is, it satisfies the three axioms.

Solution: Clearly d is symmetric, d(p, p) = 0, and d(p, q) > 0 if
p ̸= q. It remains to check the triangle inequality:

d(p, q) ≤ d(p, r) ≥ d(r, q).

Write p = (x1, y1), r = (x2, y2), and q = (x3, y3). If x1 = x3 then
we have

d(p, r) + d(r, q) ≥ |y1 − y2|+ |y2 − y3| ≥ |y1 − y3| = d(p, q).

If x1 ̸= x3 then either x1 ̸= x2 or x2 ̸= x3 or both. In any case
we have

d(p, r)+d(r, q) ≥ |y1− y2|+ |y2− y3|+1 ≥ |y1− y3|+1 = d(p, q).
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(b) Sketch the open balls of radius 1/2, 1, and 2 around the origin in
this metric.

Solution:

1/2: 1: 2:

(c) Give an example of a sequence that converges in the Euclidean
metric d2 but not in our silly metric d.

Solution: Let pn = ( 1n , 0). In the Euclidean metric we have
pn → (0, 0) by problem 1.1(b) above. If it converged in the silly
metric, say to a limit ℓ, then there would be an N such that
n ≥ N implies d(pn, ℓ) < 1/2. In particular, we would have

d(pN , pN+1) ≤ d(pN , ℓ) + d(ℓ, pN+1) < 1/2 + 1/2 = 1,

but in fact d(pm, pn) = 1 whenever m ̸= n.

(In the terms of the next section, the sequence is not even Cauchy
in the silly metric.)

(d) Show that every sequence that converges in d converges d2.

Solution: Let pn = (xn, yn) be a sequence converging to a limit
ℓ = (x, y) in the silly metric d. We want to show that pn → ℓ in
the Euclidean metric d2.

Let ϵ > 0 be given. Because pn → ℓ in d, there is an N such that
d(pn, ℓ) < min(ϵ, 1) for all n ≥ N . Because d(pn, ℓ) < 1, we must
have xn = x, so

d2(pn, ℓ) =
p

(xn − x)2 + (yn − y)2 = |yn − y| = d(pn, ℓ) < ϵ.
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1.11. Let (X, dX) and (Y, dY ) be metric spaces, let p1, p2, p3, . . . be a se-
quence that converges to a point ℓ in X, and let f : X → Y be contin-
uous at ℓ. Prove that the sequence f(p1), f(p2), f(p3), . . . converges
to f(ℓ) in Y .

Solution: Let ϵ > 0 be given. Because f is continuous at ℓ, there is a
δ > 0 such that dY (f(pn), f(ℓ)) < ϵ whenever dX(pn, ℓ) < δ. Because
pn converges to ℓ, there is an integer N such that dX(pn, ℓ) < δ for all
n ≥ N . Thus dY (f(pn), f(ℓ)) < ϵ for all n ≥ N .

1.4. (Optional.) In Example 1.8(a) we saw a sequence in C([0, 1]) that
converges in the L1 metric but not in the sup metric. Prove that
the reverse cannot happen: every sequence that converges in the sup
metric converges in the L1 metric.

Solution: First I claim that for any f, g ∈ C([0, 1]) we have d1(f, g) ≤
d∞(f, g). To see this, set

M = sup
x∈[0,1]

|f(x)− g(x)|.

Then |f(x)− g(x)| ≤ M for all x ∈ [0, 1], so

d1(f, g) =

Z 1

0
|f(x)− g(x)| dx ≤

Z 1

0
M dx = M = d∞(f, g).

Now suppose we have a sequence f1, f2, f3, . . . that converges in the
sup metric to a limit g. Let ϵ > 0 be given, and choose an N such
that n ≥ N implies d∞(fn, g) < ϵ; then n ≥ N also implies that
d1(fn, g) < ϵ. Thus the sequence converges to g in the L1 metric as
well.
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