1.1.

Solutions to Homework 1

(a) For each of the three metrics in Example 1.4, sketch the open ball
of some radius 7 > 0 around the origin in R?:

B (0) = {(z,y) € R? : d((z,y), 0) <7}

Solution:

.

dy:

ce.
..

For one of the three metrics (your choice), prove or give a counter-
example to the following statement: a sequence of points (z1,y1),
(72,92), (73,93), ... € R? converges to a limit (z,y) if and only if
T, — x and y, — y separately, as sequences in R with the usual

metric.

Solution: The statement is true in all three metrics.

First suppose that =, — x and y, — y separately. Let ¢ > 0
be given. Choose an integer N such that |z, — x| < €/2 for all
n > Ny, and an integer Ny such that |y, —y| < €/2 for all n > Ns.
Let N = max{Ny, N2}, and suppose that n > N. In the taxicab

metric, we have

d1((#n, yn)s (2,9)) = |on = 2| + [yn =yl < (¢/2) + (¢/2) = €

In the Euclidean metric, we have

d2((n, yn), (2,9)) = V]zn — 2P + lyn — yI?

<V(€/2)2 4 (¢/2)2 =€-V2/2 < e.



In the square metric, we have
doo((Zns Yn), (2, y)) = max{|z, — [, lyn —y[} <€/2 <e

Thus (n,yn) — (z,y) in all three metrics.

Conversely, suppose that (z,,y,) — (z,y) in any of the three
metrics. In the taxicab metric we have

|zn — 2| < |z — 2| + yn — y| = di (20, yn), (z,9))-

In the Euclidean metric we have

|p—a| = /(20 — 2)2 < V] — 22 + [yn — y2 = do((@n, yn), (,9))-
In the square metric we have
|zn — 2| < max{|zn — 2|, [yn — Y|} = doo((Tn, yn), (2,9))

The right-hand sides go to zero as n — o0, so |z, — x| — 0 as
well, so x, — x. Similarly y, — y.

1.3. Consider the following silly metric on R?:

ly1 — yol if 11 = xy
d((r1,21), (z2,92)) = .
lyr — 12| + 1 if x1 # 2.

(a) Prove that d is a metric, that is, it satisfies the three axioms.

Solution: Clearly d is symmetric, d(p,p) = 0, and d(p,q) > 0 if
p # q. It remains to check the triangle inequality:

d(p,q) < d(p,r) > d(r,q).

Write p = (z1,y1), © = (22, 42), and ¢ = (z3,ys3). If 1 = x3 then
we have

d(p,7) +d(r,q) = |y1 — y2| + ly2 — y3| > [y1 — ys| = d(p,q).

If 1 # x3 then either x1 # 9 or x9 # x3 or both. In any case
we have

d(p,7)+d(r,q) > lyi —y2| +ly2—ys|+1 > |y1 —ys| +1 = d(p, q).



(b)

Sketch the open balls of radius 1/2, 1, and 2 around the origin in
this metric.

Solution:
1/2: 1: 2: )
1
10
-30
-1

Give an example of a sequence that converges in the Euclidean
metric do but not in our silly metric d.

Solution: Let p, = (2,0). In the Euclidean metric we have
pn. — (0,0) by problem 1.1(b) above. If it converged in the silly
metric, say to a limit ¢, then there would be an N such that
n > N implies d(p,,¢) < 1/2. In particular, we would have

d(pn,pN+1) < d(pn,€) +d(l,pyy1) <1/2+1/2 =1,

but in fact d(pm,pn) = 1 whenever m # n.

(In the terms of the next section, the sequence is not even Cauchy
in the silly metric.)

Show that every sequence that converges in d converges ds.
Solution: Let p, = (x,,yn) be a sequence converging to a limit
¢ = (z,y) in the silly metric d. We want to show that p, — ¢ in
the Euclidean metric do.

Let € > 0 be given. Because p,, — £ in d, there is an N such that
d(pn,£) < min(e, 1) for all n > N. Because d(pn, ¢) < 1, we must
have x,, = z, so

do2(Pns €) = V(T — )2+ (Yn — ¥)2 = [y — y| = d(pn, L) < €.




1.11.

1.4.

Let (X,dx) and (Y,dy) be metric spaces, let pi,p2,ps3,... be a se-
quence that converges to a point £ in X, and let f: X — Y be contin-
uous at £. Prove that the sequence f(p1), f(p2), f(ps),... converges
to f(¢) in Y.

Solution: Let € > 0 be given. Because f is continuous at ¢, there is a
d > 0 such that dy (f(pn), f(£)) < € whenever dx (pn,¥) < 0. Because
pp, converges to £, there is an integer N such that dx (py,£) < ¢ for all
n > N. Thus dy (f(pn), f(¢)) < efor all n > N.

(Optional.) In Example 1.8(a) we saw a sequence in C([0,1]) that
converges in the L' metric but not in the sup metric. Prove that
the reverse cannot happen: every sequence that converges in the sup
metric converges in the L' metric.

Solution: First I claim that for any f, g € C([0,1]) we have d;i(f, g) <
doo(f,g). To see this, set

M= sup |f(@) - glx))
z€[0,1]

Then |f(x) — g(x)| < M for all x € [0, 1], so
1 1
iif.9)= [ 1@ =gl de < [ Mo =M = dulf0)

Now suppose we have a sequence f1, fo, f3,... that converges in the
sup metric to a limit g. Let € > 0 be given, and choose an N such
that n > N implies doo(fn,9) < € then m > N also implies that
di(fn,g) < e. Thus the sequence converges to g in the L' metric as
well.



