
Solutions to Homework 2

1.5. Let (X, d) be a metric space. Prove the reverse triangle inequality :

|d(p, q)− d(p, r)| ≤ d(q, r).

Include an appropriate picture.

Solution: The triangle inequality gives

d(p, q) ≤ d(p, r) + d(q, r),

so
d(p, q)− d(p, r) ≤ d(q, r). (1)

The triangle inequality also gives

d(p, r) ≤ d(p, q) + d(q, r),

so
d(p, r)− d(p, q) ≤ d(p, r). (2)

The left-hand side of (2) is the opposite of the left-hand side of (1),
so taken together they imply that

|d(p, q)− d(p, r)| ≤ d(p, r).

Here are two pictures:
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In the first we see that d(p, q) − d(p, r) is shorter than d(q, r). In the
second we see that d(p, q) − d(p, r) is negative, but its absolute value
is again shorter than d(q, r).
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1.6. Let (X, dX) and (Y, dY ) and (Z, dZ) be metric spaces. Let f : X → Y
be continuous at a point p ∈ X, and let g : Y → Z be continuous at
f(p). Prove that g ◦ f is continuous at p.

Solution: Let ϵ > 0 be given. Because g is continuous at f(p), there
is an η > 0 such that dY (f(p), r) < η implies dZ(g(f(p)), g(r)) < ϵ for
all r ∈ Y , and in particular for all r of the form g(q) for some q ∈ X.
Because f is continuous at p, there is a δ > 0 such that dX(p, q) < δ
implies dY (f(p), f(q)) < η for all q ∈ X. Thus dX(p, q) < δ implies
dZ(g(f(p)), g(f(q))) < ϵ for all q ∈ X.

1.8 Let X be any set, and let dX be the discrete metric

dX(p, q) =

{
0 if p = q, or

1 if p ̸= q.

(a) Prove that dX is a metric.

Solution: Clearly d is symmetric, d(p, p) = 0, and d(p, q) > 0 if
p ̸= q. It remains to check the triangle inequality:

d(p, r) ≤ d(p, q) + d(q, r)

for all p, q, r ∈ X. We could analyze a series of cases (p = q = r,
or p = q ̸= r, etc.) and see that the triangle inequality holds
in each case. Or we could ask, how could the triangle inequality
fail, knowing that all the distances that appear in it are either 0
or 1? Only if the left-hand side is 1 and the right-hand side is 0.
But if the right-hand side is 0 then d(p, q) = d(q, r) = 0, so p = q
and q = r, so p = r, so the left-hand side is 0, not 1.

(b) Let (Y, dY ) be another metric space (not necessarily discrete).
Prove that every map f : X → Y is continuous.

Solution: Let p ∈ X and ϵ > 0 be given, and let δ = 1
2 . If

dX(p, q) < δ = 1
2 then dX(p, q) = 0, so p = q, so dY (f(p), f(q)) =

0 < ϵ.

(c) Prove that a sequence p1, p2, p3, . . . ∈ X converges in the discrete
metric if and only if it is eventually constant.

Solution: Let ℓ ∈ X be the limit. Apply the definition of con-
vergence with ϵ = 1

2 , so there is an integer N such that if n ≥ N
then d(pn, ℓ) < ϵ = 1

2 , so d(pn, ℓ) = 0, so pn = ℓ.
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2.1 Let X = R2 with the Euclidean metric. Sketch the subset

A = {(x, y) ∈ R2 : x ̸= 0 or y = 0}.

Prove that A is neither open nor closed. Solution:

To see that A is not open, observe that the origin (0, 0) ∈ A, but
any ball around the origin, say Br(0, 0), contains a point (0, r/2)
that is not in A.

To see that A is not closed, consider the sequence of points pn =
( 1n , 1), which stays in A but converges to (0, 1) which is not in A.
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1. Let X = Q with the metric induced from the usual one on R.

(a) Prove that the subset

{x ∈ Q : x2 < 1}

is open but not closed.

Solution: Call the subset A, and notice that we can also describe
it as

A = {x ∈ Q : |x| < 1}.
To see that A is open, let x ∈ A, and take r = 1− |x| > 0. Then
Br(x) ⊂ A: for all y ∈ Q with |y − x| < r, we have

|y| ≤ |y − x|+ |x| < r + |x| = 1,

so y ∈ A.

To see that A is not closed, consider the sequence 1
2 ,

2
3 ,

3
4 , . . . ∈ A

which converges to 1 /∈ A.

(b) Prove that the subset

{x ∈ Q : x2 < 2}

is both open and closed.

Solution: Call the subset B, and notice that we can also describe
it as

B = {x ∈ Q : x2 ≤ 2},
because there is no x ∈ Q with x2 = 2. Thus we can describe it
either as

B = {x ∈ Q : |x| <
√
2},

or as
B = {x ∈ Q : |x| ≤

√
2}.

To see that B is open, let x ∈ B, take r =
√
2 − |x|, and argue

that Br(x) ⊂ B as before.

To see that B is closed, let xn be a sequence of rational numbers
with |xn| ≤

√
2, converging to a limit ℓ. We have

|ℓ| ≤ |ℓ− xn|+ |xn| ≤ |ℓ− xn|+
√
2

for all n. For every ϵ > 0 there is an n such that |ℓ− xn| < ϵ, so
the right-hand side is less that

√
2 + ϵ: that is, |ℓ| <

√
2 + ϵ for

all ϵ > 0, so |ℓ| ≤
√
2.
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2.3 (Optional.) Let U ⊂ C1([0, 1]) be the set of functions with simple
roots – that is, those for which f ′(x) ̸= 0 whenever f(x) = 0. Prove
that U is open in the C1 metric

d(f, g) = sup |f − g|+ sup |f ′ − g′|.

Hint: For a given f ∈ U , take the ball of radius

r = inf
(
|f |+ |f ′|

)
.

Solution: Observe that f ∈ U if and only if |f(x)| + |f ′(x)| > 0 for
all x ∈ [0, 1], because that says that f(x) ̸= 0 or f ′(x) ̸= 0 or both.

Let f ∈ U be given, and take r as in the hint. First let us argue that
r > 0. Because f and f ′ are continuous, |f | + |f ′| is continuous, so
it achieves its sup and inf: that is, there is an x ∈ [0, 1] such that
|f(x)|+ |f ′(x)| = r. But this is positive because f ∈ U .

Now let us argue that if d(f, g) < r then g ∈ U . By the reverse triangle
inequality, we have

|g(x)| ≥ |f(x)| − |f(x)− g(x)| and |g′(x)| ≥ |f ′(x)| − |f ′(x)− g′(x)|

for all x ∈ [0, 1]. Adding the two inequalities, we get

|g(x)|+ |g′(x)| ≥ |f(x)|+ |f ′(x)| − |f(x)− g(x)| − |f ′(x)− g′(x)|.

For the first two terms on the right-hand side, we have

|f(x)|+ |f ′(x)| ≥ inf
(
|f |+ |f ′|

)
= r

and for the last two terms,

|f(x)− g(x)|+ |f ′(x)− g′(x)| ≤ sup |f − g|+sup |f ′− g′| = d(f, g) < r,

so
|g(x)|+ |g′(x))| > r − r = 0.

Thus g ∈ U , as desired.
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