
Solutions to Homework 3

2.6. Without using Proposition 2.12,

(a) Prove that if U, V ⊂ X are open, then the intersection U ∩ V is
again open.

Solution: Let p ∈ U ∩ V . Then there is an r1 > 0 such that
Br1(p) ⊂ U , and an r2 > 0 such that Br2(p) ⊂ V . Let r =
min{r1, r2}; then Br(p) ⊂ Br1(p) ⊂ U , and Br(p) ⊂ Br2(p) ⊂ V ,
so Br(p) ⊂ U ∩ V .

(b) Give an example of countably many open sets U1, U2, U3, . . . ⊂ X
such that their intersection U1 ∩ U2 ∩ U3 ∩ · · · is not open.

Solution: Let X = R with the usual metric, and let Un be the
open interval (− 1

n ,
1
n). Then U1 ∩ U2 ∩ · · · = {0}, which is not

open.

(c) Let I be a set, and suppose that for each i ∈ I we have an open
set Ui ⊂ X. Prove that the union

⋃
i∈I Ui is again open.

Solution: Let p ∈
⋃

i∈I Ui. Then there is some i ∈ I with p ∈ Ui,
and because Ui is open, there is an r > 0 such that Br(p) ⊂ Ui.
Thus Br(p) ⊂

⋃
i∈I Ui.
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3.1. Prove that the sequence of piecewise-linear functions f2, f3, f4, . . . ∈
C([0, 1]) introduced at the beginning of the section is Cauchy in the
L1 metric.

Solution: Recall that fm was defined as going piecewise linearly from
fn(0) = 0 to fn(

1
2 − 1

n) = 0 to fn(
1
2 + 1

n) = 1 to fn(1) = 1, so the
graphs of fm and fn look like this:

The integral of |fm − fn| is the area between the two graphs, that is,
the area of two triangles whose height is 1

2 and whose base is | 1m − 1
n |,

so
d1(fm, fn) =

1
2

∣∣ 1
m − 1

n

∣∣ .
So we must prove that for every ϵ > 0 there is an integer N such that
for all m,n ≥ N we have

1
2

∣∣ 1
m − 1

n

∣∣ < ϵ.

If we’re feeling sneaky, we could point out that this statement is equiv-
alent to saying the sequence of real numbers 1

2n is Cauchy, and we know
that 1

2n → 0, and that a convergent sequence is Cauchy, so we’re done.

Or we could just prove the statement by hand. Let ϵ > 0 be given,
choose an N such that 1

2N < ϵ, and let m,n ≥ N . If n ≥ m then
1
m ≥ 1

n , so
1
2

∣∣ 1
m − 1

n

∣∣ ≤ 1
2 · 1

m ≤ 1
2 · 1

N < ϵ,

and if m ≥ n then it’s similar.
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3.4. Let (X, d) be a metric space, let f : X → X, suppose there is a “Lips-
chitz constant” r ∈ [0, 1) such that for all p, q ∈ X we have

d(f(p), f(q)) ≤ r · d(p, q).

Prove that f is continuous.

Solution: Let p ∈ X and ϵ > 0 be given, and set δ = ϵ. If d(p, q) < δ,
then

d(f(p), f(q)) ≤ r · d(p, q) < d(p, q) < δ = ϵ,

where in the second step we used the fact that r < 1.

3.3. (Optional.) Let p1, p2, p3, . . . be a Cauchy sequence in a metric space
(X, d). Prove that the sequence is bounded, meaning that there is a
point q ∈ X and a radius R > 0 such that pn ∈ BR(q) for all n. In
fact, for any q ∈ X you can find such a radius R, and in particular for
X = R you can take q = 0.

Solution: I’ll prove the stronger statement, “for any q there is a radius
R. . . ” rather than “there is a q and a radius R. . . ”

Let q ∈ X be given. Apply the definition of Cauchy with ϵ = 1 to
get an N such that for all m,n ≥ N we have d(pm, pn) < 1, and
in particular d(pN , pn) < 1. Let R be the maximum of d(q, p1) + 1,
d(q, p2) + 1, and so on up through d(q, pN ) + 1.

I claim that pn ∈ BR(q) for all n, that is, d(q, pn) < R for all n. If
n ≤ N then this is clear by construction. If n ≥ N then d(pN , pn) < 1,
so

d(q, pn) ≤ d(q, pN ) + d(pN , pn) < d(q, pN ) + 1 ≤ R.
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