
Solutions to Homework 4

2.8 In Example 1.4 we saw three different metrics on R2. Prove one of the
following:

(a) A subset A ⊂ R2 is open in the Euclidean metric if and only if it
is open in the taxicab metric.

(b) A subset A ⊂ R2 is open in the Euclidean metric if and only if it
is open in the square metric.

(c) A subset A ⊂ R2 is open in the taxicab metric if and only if it is
open in the square metric.

Solution: I’ll prove all three. Given two points x = (x1, x2) and
y = (y1, y2), I claim first that

d∞(x,y) ≤ d2(x,y) ≤ d1(x,y) ≤ 2d∞(x,y). (1)

I’ll prove it assuming that |x1−y1| ≥ |x2−y2|; the other case is similar.

For the first inequality of (1), we have d∞(x,y) = |x1 − y1|, so

d∞(x,y)2 = |x1 − y1|2 ≤ |x1 − y1|2 + |x2 − y2|2,

and taking square roots we get d∞(x,y) ≤ d2(x,y).

For the second inequality of (1), use the triangle inequality in d2:

d2(x,y) ≤ d2(x, (x2, y1)) + d2((x2, y1),y)

= |x1 − x2|+ |y1 − y2| = d1(x,y).

For the third inequality of (1), we have

d1(x,y) = |x1 − y1|+ |x2 − y2| ≤ |x1 − y1|+ |x1 − y1| = 2d∞(x,y).

Thus (1) is established.
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It follows that for any r > 0, the balls in the three metrics are related
by

Br/2(x, d∞) ⊂ Br(x, d1) ⊂ Br(x, d2) ⊂ Br(x, d∞). (2)

If A is open in d∞, then for any x ∈ A there is an r > 0 such that
Br(x, d∞) ⊂ A, so Br(x, d2) ⊂ A by (2); thus A is open in d2. Sim-
ilarly, if A is open in d2 then it is open in d1, and if A is open in d1
then it is open in d∞.

4.1 Find the closure, interior, and boundary of each subset of R2 in the
Euclidean topology:

(a) A1 = {(x, y) : 0 < x ≤ 1, 0 ≤ y < 1}
Solution: The interior is the open square given by 0 < x < 1
and 0 < y < 1. The closure is the closed square 0 ≤ x ≤ 1 and
0 ≤ y ≤ 1. The boundary is the four line segments shown:

(b) A2 = {(x, y) : 0 < x ≤ 1, y = 0}
Solution: The interior is empty. The closure is the line segment
given by 0 ≤ x ≤ 1 and y = 0. The boundary is the same line
segment.

(c) A3 = {(x, y) : x ∈ Q or y ∈ Q}
Solution: The interior is empty. The closure is all of R2. The
boundary is all of R2.

(d) The subset A from Exercise 2.1.

The interior is the complement of the y-axis, that is, the set where
x ̸= 0. The closure is all of R2. The boundary is the y-axis.
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4.2 Prove the analogue of Proposition 4.10 for closures without using
Proposition 4.8. For (c), (d), and (e) especially, you’ll want to fol-
low the proof Proposition 4.10 closely.

(a) Ā is closed.

Solution: Let p1, p2, . . . be a sequence of points in Ā converging
to a limit ℓ ∈ X. We will prove that for every ϵ > 0, the set
Bϵ(ℓ) ∩A is not empty, so ℓ ∈ Ā by Proposition 4.7.

Let ϵ > 0 be given. Because pn → ℓ, there is an N such that
d(pn, ℓ) < ϵ/2 for all n ≥ N , and in particular d(pN , ℓ) < ϵ/2.
Because pN ∈ Ā, the set Bϵ/2(pN )∩A is not empty by Proposition
4.7; let q be a point in that intersection. Then

d(q, ℓ) ≤ d(q, pN ) + d(pN , ℓ) < ϵ/2 + ϵ/2 = ϵ,

so Bϵ(ℓ) ∩A contains the point q and is not empty.

(b) Ā is the smallest closed set contained in A, in the following sense:
if F ⊂ X is closed and A ⊂ F , then Ā ⊂ F .

Solution: Let F ⊂ X be a closed set with A ⊂ F ; we will prove
that p ∈ Ā implies p ∈ F . If p ∈ Ā, then by definition there is a
sequence a1, a2, . . . in A that converges to p. Because A ⊂ F , we
have an ∈ F for all n. Because F is closed, we have p ∈ F .

(c) If A ⊂ B then Ā ⊂ B̄.

Solution: We have A ⊂ B ⊂ B̄, and B̄ is closed by part (a), so
Ā ⊂ B̄ by part (b).

(d) A ∪B = Ā ∪ B̄.

Solution: We have A ⊂ Ā ⊂ Ā ∪ B̄, and B ⊂ B̄ ⊂ Ā ∪ B̄, so
A ∪B ⊂ Ā ∪ B̄. But Ā ∪ B̄ is a union of two closed sets by part
(a), hence is closed by Prop. 2.10, so A ∪B ⊂ Ā∪ B̄ by part (b).

For the reverse inclusion, we have A ⊂ A ∪ B, so Ā ⊂ A ∪B by
part (c), and similarly B̄ ⊂ A ∪B; thus Ā ∪ B̄ ⊂ A ∪B.

(e) A ∩B ⊂ Ā ∩ B̄. Give an example to show that the inclusion can
be strict.

Solution: As in the first half of part (d), we have A∩B ⊂ A ⊂ Ā,
and A ∩ B ⊂ B ⊂ B̄, so A ∩ B ⊂ Ā ∩ B̄. Now Ā and B̄ are
closed by part (a), and an intersection of closed sets is closed by
Proposition 2.11, so A ∩B ⊂ Ā ∩ B̄ by part (b).

For a counterexample to the reverse inclusion, take X = R in the
usual metric, A = (0, 1), and B = (1, 2). Then A ∩ B = ∅, so
A ∩B = ∅, but Ā = [0, 1] and B̄ = [1, 2], so Ā ∩ B̄ = {1}.
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4.3 Give an example to show that the inclusions Br(p) ⊂ B̄r(p) and
Br(p) ⊂ B̄r(p) can be strict.

Solution: Let X = Z with the usual metric, let p = 0, and let
r = 1. Then Br(p) = {0}, which is both open and closed, whereas
B̄r(p) = {−1, 0, 1}.

1.12 (Optional.) Let
W = {1, 12 ,

1
3 ,

1
4 , . . . , 0}

with the metric induced from the usual one on R. Let (X, dX) be
another metric space. Given a sequence p1, p2, p3 . . . ∈ X and a point
ℓ ∈ X, prove that the map f : W → X defined by{

f( 1n) = pn,

f(0) = ℓ

is continuous if and only if pn → ℓ.

Solution: First suppose that f is continuous. The sequence 1
n con-

verges to 0 in W , so by Exercise 1.11 we see that the sequence f( 1n) =
pn converges to f(0) = ℓ.

Conversely, suppose that pn → ℓ. We want to show that f is contin-
uous at every w ∈ W . There are two cases: either w = 1

n , or w = 0.
Let ϵ > 0 be given.

If w = 1
n , let δ = 1

n − 1
n+1 = 1

n(n+1) . If w′ ∈ W satisfies d(w,w′) < δ,

then w′ = w, so d(f(w), f(w′)) = 0 < ϵ.

If w = 0, choose N such that d(pn, ℓ) < ϵ for all n > N , and let
δ = 1/N . If w′ ∈ W satisfies d(w,w′) < δ = 1/N , then either
w′ = 0, so d(f(w), f(w′)) = 0 < ϵ, or w′ = 1/n for some n > N ,
so d(f(w), f(w′)) = d(ℓ, pn) < ϵ.
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