Solutions to Homework 4

- 2.8 In Example 1.4 we saw three different metrics on \mathbb{R}^2 . Prove one of the following:
 - (a) A subset $A \subset \mathbb{R}^2$ is open in the Euclidean metric if and only if it is open in the taxicab metric.
 - (b) A subset $A \subset \mathbb{R}^2$ is open in the Euclidean metric if and only if it is open in the square metric.
 - (c) A subset $A \subset \mathbb{R}^2$ is open in the taxicab metric if and only if it is open in the square metric.

Solution: I'll prove all three. Given two points $\mathbf{x} = (x_1, x_2)$ and $\mathbf{y} = (y_1, y_2)$, I claim first that

$$d_{\infty}(\mathbf{x}, \mathbf{y}) \le d_2(\mathbf{x}, \mathbf{y}) \le d_1(\mathbf{x}, \mathbf{y}) \le 2d_{\infty}(\mathbf{x}, \mathbf{y}).$$
(1)

I'll prove it assuming that $|x_1-y_1| \ge |x_2-y_2|$; the other case is similar. For the first inequality of (1), we have $d_{\infty}(\mathbf{x}, \mathbf{y}) = |x_1 - y_1|$, so

$$d_{\infty}(\mathbf{x}, \mathbf{y})^2 = |x_1 - y_1|^2 \le |x_1 - y_1|^2 + |x_2 - y_2|^2,$$

and taking square roots we get $d_{\infty}(\mathbf{x}, \mathbf{y}) \leq d_2(\mathbf{x}, \mathbf{y})$. For the second inequality of (1), use the triangle inequality in d_2 :

$$d_2(\mathbf{x}, \mathbf{y}) \le d_2(\mathbf{x}, (x_2, y_1)) + d_2((x_2, y_1), \mathbf{y})$$

= $|x_1 - x_2| + |y_1 - y_2| = d_1(\mathbf{x}, \mathbf{y}).$

For the third inequality of (1), we have

$$d_1(\mathbf{x}, \mathbf{y}) = |x_1 - y_1| + |x_2 - y_2| \le |x_1 - y_1| + |x_1 - y_1| = 2d_{\infty}(\mathbf{x}, \mathbf{y}).$$

Thus (1) is established.

It follows that for any r > 0, the balls in the three metrics are related by

$$B_{r/2}(\mathbf{x}, d_{\infty}) \subset B_r(\mathbf{x}, d_1) \subset B_r(\mathbf{x}, d_2) \subset B_r(\mathbf{x}, d_{\infty}).$$
(2)

If A is open in d_{∞} , then for any $\mathbf{x} \in A$ there is an r > 0 such that $B_r(\mathbf{x}, d_{\infty}) \subset A$, so $B_r(\mathbf{x}, d_2) \subset A$ by (2); thus A is open in d_2 . Similarly, if A is open in d_2 then it is open in d_1 , and if A is open in d_1 then it is open in d_{∞} .

- 4.1 Find the closure, interior, and boundary of each subset of \mathbb{R}^2 in the Euclidean topology:
 - (a) $A_1 = \{(x, y) : 0 < x \le 1, 0 \le y < 1\}$

Solution: The interior is the open square given by 0 < x < 1 and 0 < y < 1. The closure is the closed square $0 \le x \le 1$ and $0 \le y \le 1$. The boundary is the four line segments shown:

(b)
$$A_2 = \{(x, y) : 0 < x \le 1, y = 0\}$$

Solution: The interior is empty. The closure is the line segment given by $0 \le x \le 1$ and y = 0. The boundary is the same line segment.

(c) $A_3 = \{(x, y) : x \in \mathbb{Q} \text{ or } y \in \mathbb{Q}\}$

Solution: The interior is empty. The closure is all of \mathbb{R}^2 . The boundary is all of \mathbb{R}^2 .

(d) The subset A from Exercise 2.1.

The interior is the complement of the y-axis, that is, the set where $x \neq 0$. The closure is all of \mathbb{R}^2 . The boundary is the y-axis.

- 4.2 Prove the analogue of Proposition 4.10 for closures without using Proposition 4.8. For (c), (d), and (e) especially, you'll want to follow the proof Proposition 4.10 closely.
 - (a) A is closed.

Solution: Let p_1, p_2, \ldots be a sequence of points in \overline{A} converging to a limit $\ell \in X$. We will prove that for every $\epsilon > 0$, the set $B_{\epsilon}(\ell) \cap A$ is not empty, so $\ell \in \overline{A}$ by Proposition 4.7.

Let $\epsilon > 0$ be given. Because $p_n \to \ell$, there is an N such that $d(p_n, \ell) < \epsilon/2$ for all $n \ge N$, and in particular $d(p_N, \ell) < \epsilon/2$. Because $p_N \in \overline{A}$, the set $B_{\epsilon/2}(p_N) \cap A$ is not empty by Proposition 4.7; let q be a point in that intersection. Then

$$d(q,\ell) \le d(q,p_N) + d(p_N,\ell) < \epsilon/2 + \epsilon/2 = \epsilon,$$

so $B_{\epsilon}(\ell) \cap A$ contains the point q and is not empty.

(b) \overline{A} is the smallest closed set contained in A, in the following sense: if $F \subset X$ is closed and $A \subset F$, then $\overline{A} \subset F$.

Solution: Let $F \subset X$ be a closed set with $A \subset F$; we will prove that $p \in \overline{A}$ implies $p \in F$. If $p \in \overline{A}$, then by definition there is a sequence a_1, a_2, \ldots in A that converges to p. Because $A \subset F$, we have $a_n \in F$ for all n. Because F is closed, we have $p \in F$.

- (c) If A ⊂ B then Ā ⊂ B̄.
 Solution: We have A ⊂ B ⊂ B̄, and B̄ is closed by part (a), so Ā ⊂ B̄ by part (b).
- (d) $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

Solution: We have $A \subset \overline{A} \subset \overline{A} \cup \overline{B}$, and $B \subset \overline{B} \subset \overline{A} \cup \overline{B}$, so $A \cup B \subset \overline{A} \cup \overline{B}$. But $\overline{A} \cup \overline{B}$ is a union of two closed sets by part (a), hence is closed by Prop. 2.10, so $\overline{A \cup B} \subset \overline{A} \cup \overline{B}$ by part (b). For the reverse inclusion, we have $A \subset A \cup B$, so $\overline{A} \subset \overline{A \cup B}$ by part (c), and similarly $\overline{B} \subset \overline{A \cup B}$; thus $\overline{A} \cup \overline{B} \subset \overline{A \cup B}$.

(e) $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$. Give an example to show that the inclusion can be strict.

Solution: As in the first half of part (d), we have $A \cap B \subset A \subset \overline{A}$, and $A \cap B \subset B \subset \overline{B}$, so $A \cap B \subset \overline{A} \cap \overline{B}$. Now \overline{A} and \overline{B} are closed by part (a), and an intersection of closed sets is closed by Proposition 2.11, so $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$ by part (b).

For a counterexample to the reverse inclusion, take $X = \mathbb{R}$ in the usual metric, A = (0, 1), and B = (1, 2). Then $A \cap B = \emptyset$, so $\overline{A \cap B} = \emptyset$, but $\overline{A} = [0, 1]$ and $\overline{B} = [1, 2]$, so $\overline{A} \cap \overline{B} = \{1\}$.

4.3 Give an example to show that the inclusions $\overline{B_r(p)} \subset \overline{B_r(p)}$ and $\overline{B_r(p)} \subset \overline{B_r(p)}$ can be strict.

Solution: Let $X = \mathbb{Z}$ with the usual metric, let p = 0, and let r = 1. Then $B_r(p) = \{0\}$, which is both open and closed, whereas $\overline{B}_r(p) = \{-1, 0, 1\}$.

1.12 (Optional.) Let

$$W = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, 0\}$$

with the metric induced from the usual one on \mathbb{R} . Let (X, d_X) be another metric space. Given a sequence $p_1, p_2, p_3 \ldots \in X$ and a point $\ell \in X$, prove that the map $f: W \to X$ defined by

$$\begin{cases} f(\frac{1}{n}) = p_n, \\ f(0) = \ell \end{cases}$$

is continuous if and only if $p_n \to \ell$.

Solution: First suppose that f is continuous. The sequence $\frac{1}{n}$ converges to 0 in W, so by Exercise 1.11 we see that the sequence $f(\frac{1}{n}) = p_n$ converges to $f(0) = \ell$.

Conversely, suppose that $p_n \to \ell$. We want to show that f is continuous at every $w \in W$. There are two cases: either $w = \frac{1}{n}$, or w = 0. Let $\epsilon > 0$ be given.

If $w = \frac{1}{n}$, let $\delta = \frac{1}{n} - \frac{1}{n+1} = \frac{1}{n(n+1)}$. If $w' \in W$ satisfies $d(w, w') < \delta$, then w' = w, so $d(f(w), f(w')) = 0 < \epsilon$.

If w = 0, choose N such that $d(p_n, \ell) < \epsilon$ for all n > N, and let $\delta = 1/N$. If $w' \in W$ satisfies $d(w, w') < \delta = 1/N$, then either w' = 0, so $d(f(w), f(w')) = 0 < \epsilon$, or w' = 1/n for some n > N, so $d(f(w), f(w')) = d(\ell, p_n) < \epsilon$.