Solutions to Homework 4

2.8 In Example 1.4 we saw three different metrics on R?. Prove one of the
following:

(a) A subset A C R?is open in the Euclidean metric if and only if it
is open in the taxicab metric.

(b) A subset A C R? is open in the Euclidean metric if and only if it
is open in the square metric.

(c) A subset A C R? is open in the taxicab metric if and only if it is
open in the square metric.

Solution: TI'll prove all three. Given two points x = (z1,z2) and
y = (y1,y2), I claim first that

doo(xvy) < d2(XJy) < dl(X7Y) < 2d00(xvy) (1)

I'll prove it assuming that |21 —y1| > |x2—y2|; the other case is similar.

For the first inequality of (1), we have d(x,y) = |21 — y1|, so
doo(x,¥)? = |21 — 11 * < |o1 — 1 + |22 — 12,

and taking square roots we get doo(x,y) < dao(x,y).

For the second inequality of (1), use the triangle inequality in ds:

da(x,y) < da(x, (z2,91)) + do((@2, 1), y)
= |z1 — 2| + |y1 — y2| = di(x,y).

For the third inequality of (1), we have
di(x%,y) = |21 =yl + |w2 — gl <1 =yl + 21 — 1] = 2deo (%, ).

Thus (1) is established.



It follows that for any r > 0, the balls in the three metrics are related

by

B, 2(X,doo) C Br(x,d1) C Br(x,d2) C Br(X, dwo)- (2)

If A is open in d, then for any x € A there is an » > 0 such that
B, (x,dx) C A, so By(x,d2) C A by (2); thus A is open in dp. Sim-
ilarly, if A is open in ds then it is open in di, and if A is open in d;
then it is open in dy..

4.1 Find the closure, interior, and boundary of each subset of R? in the
Euclidean topology:

(a)

A ={(z,y):0<2x<1,0<y <1}

Solution: The interior is the open square given by 0 < = < 1
and 0 < y < 1. The closure is the closed square 0 < z < 1 and
0 <y < 1. The boundary is the four line segments shown:

Ay ={(z,y):0<x<1,y=0}

Solution: The interior is empty. The closure is the line segment
given by 0 < x <1 and y = 0. The boundary is the same line
segment.

As ={(z,y) :x € Qory e Q}
Solution: The interior is empty. The closure is all of R?. The
boundary is all of R2.

The subset A from Exercise 2.1.

The interior is the complement of the y-axis, that is, the set where
x # 0. The closure is all of R?. The boundary is the y-axis.



4.2 Prove the analogue of Proposition 4.10 for closures without using
Proposition 4.8. For (c), (d), and (e) especially, you'll want to fol-
low the proof Proposition 4.10 closely.

(a)

()

(d)

()

A is closed.

Solution: Let pi,pa,... be a sequence of points in A converging
to a limit £ € X. We will prove that for every ¢ > 0, the set
B.(£) N A is not empty, so £ € A by Proposition 4.7.

Let € > 0 be given. Because p, — ¢, there is an N such that
d(pn,?) < €/2 for all n > N, and in particular d(py,?) < €/2.
Because py € A, the set Be/2(pn)NA is not empty by Proposition
4.7; let ¢ be a point in that intersection. Then

d(q,0) < d(q,pn) + d(pn,l) < €/2+€/2 =,

s0 B¢(¢) N A contains the point ¢ and is not empty.

A is the smallest closed set contained in A, in the following sense:
if F C X is closed and A C F, then A C F.

Solution: Let F' C X be a closed set with A C F'; we will prove
that p € A implies p € F. If p € A, then by definition there is a
sequence a1, as, ... in A that converges to p. Because A C F', we
have a,, € F for all n. Because F' is closed, we have p € F.

If AC B then A C B.

Solution: We have A C B C B, and B is closed by part (a), so
A C B by part (b).

AUB=AUB.

Solution: We have A ¢ A c AUB, and B C B C AU B, so
AUB C AUB. But AU B is a union of two closed sets by part
(a), hence is closed by Prop. 2.10, so AU B C AU B by part (b).
For the reverse inclusion, we have A C AU B, so A C AU B by
part (c), and similarly B € AU B; thus AUB C AU B.

AN B c AN B. Give an example to show that the inclusion can
be strict.

Solution: As in the first half of part (d), we have ANB C A C A,
and ANB C B C B,so ANB C ANB. Now A and B are
closed by part (a), and an intersection of closed sets is closed by
Proposition 2.11, so AN B C AN B by part (b).

For a counterexample to the reverse inclusion, take X = R in the
usual metric, A = (0,1), and B = (1,2). Then AN B = &, so
ANB=g2,but A=[0,1] and B=[1,2],s0 AN B = {1}.



4.3

1.12

Give an example to show that the inclusions B,.(p) C B,(p) and

B.(p) C B,(p) can be strict.

Solution: Let X = Z with the usual metric, let p = 0, and let
r = 1. Then B,(p) = {0}, which is both open and closed, whereas

B.(p) ={-1,0,1}.
(Optional.) Let

w={131%1%..0
with the metric induced from the usual one on R. Let (X,dx) be
another metric space. Given a sequence p1,p2,ps3 ... € X and a point
{ € X, prove that the map f: W — X defined by

{f(,b = D,
F(0)=1¢

is continuous if and only if p, — £.

Solution: First suppose that f is continuous. The sequence % con-
verges to 0 in W, so by Exercise 1.11 we see that the sequence f (%) =
pn, converges to f(0) = £.

Conversely, suppose that p, — £. We want to show that f is contin-

uous at every w € W. There are two cases: either w = %, or w = 0.
Let € > 0 be given.
If w= %, let § = % - n%rl = m If w' € W satisfies d(w,w’) < 4,

then w' = w, so d(f(w), f(w')) =0 <e.

If w = 0, choose N such that d(p,,¢) < € for all n > N, and let
d = 1/N. If w' € W satisfies d(w,w’) < § = 1/N, then either
w' =0, so d(f(w), f(w')) =0 < ¢, or w' = 1/n for some n > N,
so d(f(w), f(w')) = d(£,pn) <.



