
Solutions to Homework 5

5.2. Give examples to show that Theorem 5.4 can fail. . .

(a) If the subsets Ui are dense but not open.

Solution: Of course there are many possibilities for each of these,
but here’s one. Let X = R with the usual metric, let U1 = Q, and
let U2 = R \Q. Both are dense but not open, and U1 ∩ U2 = ∅.
(If you feel you need to to include U3, U4, . . . , you can let them
all be Q, or R \Q, or R.)

(b) If the metric space X is not complete.

Solution: Let X = Q with the usual metric inherited from R,
enumerate all the points of Q as x1, x2, x3, . . . , and let Ui =
Q \ {xi}. Each Ui is open and dense, but U1 ∩U2 ∩U3 ∩ · · · = ∅.

(c) If the collection of open, dense subsets is uncountable.

Solution: Let X = R with the usual metric, and for each x ∈
R take Ux = R \ {x}. Then each Ux is open and dense, but⋂

x∈R Ux = ∅.

5.3. Let (X, d) be any metric space (possibly incomplete), and let U, V ⊂ X
be two open, dense subsets. Prove that U ∩ V is again dense.

Solution: Recall that a subset is dense if and only if it intersects
every non-empty open subset W ⊂ X. So let W be given, and let us
argue that W ∩U ∩ V is not empty. Because U is dense, W intersects
U ; let p ∈ W ∩ U . Because W and U are open, W ∩ U is open, so
there is an r > 0 such that Br(p) ⊂ W ∩U . Because V is dense, Br(p)
intersects V . Because Br(p) ⊂ W ∩ U we see that W ∩ U ∩ V is not
empty, which is what we wanted.
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6.1. (a) Let f : R → R be defined by f(x) = x2. Find f(A) for the
following subsets A ⊂ R: the intervals [−1, 1], [−1, 1), (−1, 1),
[0, 1], [0, 1), and (0, 1), and the singletons {−1}, {0}, and {1}.

Solution:

f([−1, 1]) = [0, 1] f([−1, 1)) = [0, 1] f((−1, 1)) = [0, 1)

f([0, 1]) = [0, 1] f([0, 1)) = [0, 1] f((0, 1)) = [0, 1)

f({−1}) = {1} f({0}) = {0} f({1}) = {1}.

(b) Now let f : X → Y be arbitrary, and let A,B ⊂ X. Prove that if
A ⊂ B then f(A) ⊂ f(B). Prove that f(A ∪ B) = f(A) ∪ f(B).
Prove that f(A ∩B) ⊂ f(A) ∩ f(B), but give an example where
they are not equal.

Solution: First we show that if A ⊂ B then f(A) ⊂ f(B). Let
y ∈ f(A), so there is an a ∈ A such that f(a) = y. Because
A ⊂ B, we have a ∈ B, so there is an a ∈ B such that f(a) = y,
so y ∈ f(B).

Next we show that f(A ∪ B) = f(A) ∪ f(B). First, we have
A ⊂ A∪B, so f(A) ⊂ f(A∪B), and similarly f(B) ⊂ f(A∪B),
so f(A) ∪ f(B) ⊂ f(A ∪ B). For the reverse inclusion, let y ∈
f(A∪B). Then there is an x ∈ A∪B such that f(x) = y. Either
x ∈ A, in which case y = f(x) ∈ f(A), or x ∈ B, in which case
y = f(x) ∈ f(B); in either case y ∈ f(A) ∪ f(B).

Next we show that f(A∩B) ⊂ f(A)∩f(B). We have A∩B ⊂ A,
so f(A ∩B) ⊂ f(A), and A ∩B ⊂ B, so f(A ∩B) ⊂ f(B).

Finally we give a counterexample to f(A ∩ B) = f(A) ∩ f(B).
Let f : R → R be the map f(x) = x2, let A = {−1} ⊂ R,
and let B = {1} ⊂ R. Then f(A) = {1} and f(B) = {1}, so
f(A) ∩ f(B) = {1}, but f(A ∩B) = f(∅) = ∅.
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6.2. (a) Let f : R → R be defined by f(x) = x2. Find f−1(B) for the
following subsets B ⊂ R: the intervals [−1, 1], [−1, 1), (−1, 1),
[0, 1], [0, 1), and (0, 1), and the singletons {−1}, {0}, and {1}.

Solution:

f−1([−1, 1]) = [−1, 1] f−1([−1, 1)) = (−1, 1) f−1((−1, 1)) = (−1, 1)

f−1([0, 1]) = [−1, 1] f−1([0, 1)) = (−1, 1) f−1((0, 1)) = (−1, 0) ∪ (0, 1)

f−1({−1}) = ∅ f−1({0}) = {0} f−1({1}) = {−1, 1}.

(b) Now let f : X → Y be arbitrary, and let A,B ⊂ Y . Prove that
if A ⊂ B then f−1(A) ⊂ f−1(B). Prove that f−1(A ∪ B) =
f−1(A) ∪ f−1(B), and that f−1(A ∩B) = f−1(A) ∩ f−1(B).

Solution: First we show that if A ⊂ B then f−1(A) ⊂ f−1(B).
Let x ∈ f−1(A). Then f(x) ∈ A, so f(X) ∈ B, so x ∈ f−1(B).

Next we show that f−1(A∪B) = f−1(A)∪f−1(B). First, we have
A ⊂ A ∪ B, so f−1(A) ⊂ f−1(A ∪ B), and similarly f−1(B) ⊂
f−1(A ∪B), so f−1(A) ∪ f−1(B) ⊂ f−1(A ∪B). For the reverse
inclusion, let x ∈ f−1(A ∪ B). Then f(x) ∈ A ∪ B; if f(x) ∈ A
then x ∈ f−1(A), and if f(x) ∈ B then x ∈ f−1(B), and in either
case x ∈ f−1(A)∪f−1(B). Thus f−1(A∪B) ⊂ f−1(A)∪f−1(B).

Finally we show that f−1(A ∩ B) = f−1(A) ∩ f−1(B). First, we
have A ∩ B ⊂ A, so f−1(A ∩ B) ⊂ f−1(A), and A ∩ B ⊂ B, so
f−1(A∩B) ⊂ f−1(B); thus f−1(A∩B) ⊂ f−1(A)∩ f−1(B). For
the reverse inclusion, let x ∈ f−1(A)∩ f−1(B); then x ∈ f−1(A),
so f(x) ∈ A, and x ∈ f−1(B), so f(x) ∈ B, so f(x) ∈ A ∩ B, so
x ∈ f−1(A∩B). Thus f−1(A)∩f−1(B) ⊂ f−1(A∩B) as desired.
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5.7. Give examples to show that Proposition 5.6 can fail. . .

(c) If the diameters all finite, but do not go to zero.

Solution: Following the hint, take X = C([0, 1]) with the sup
metric, and let Fn be the set of continuous functions f : [0, 1] →
[0, 1] with f(0) = 1 and f(x) = 0 for x ≥ 1

n . We can see that

F1 ⊃ F2 ⊃ · · · .

First let us argue that each Fn is closed. Suppose that f1, f2, . . .
is a sequence of functions in Fn converging to a limit f ∈ C([0, 1]).
By Example 1.8(c), evaluation at x = 0 is continuous in the sup
metric, so by Exercise 1.11 it preserves limits of sequences, so we
have

f(0) = lim
k→∞

fk(0) = 1.

Similarly, for all x ≥ 1
n we have

fk(x) = lim
k→∞

fk(0) = 0.

For 0 < x < 1
n we have 0 ≤ fk(x) ≤ 1, and taking the limit as

k → ∞ we get 0 ≤ f(x) ≤ 1. Thus f ∈ Fn, as desired.

Next let us argue that diam(Fn) = 1. Given two functions f, g ∈
Fn, both functions take values in [0, 1], so |f(x) − g(x)| ≤ 1 for
all x ∈ [0, 1], so d∞(f, g) ≤ 1. Thus

diamFn = sup
f,g∈Fn

d∞(f, g) ≤ 1.

It remains to produce two functions f, g ∈ Fn with d∞(f, g) = 1.
Let f be the piecewise-linear function that goes from f(0) = 1 to
f( 1

2n) = 1 to f( 1n) = 0 to f(1) = 0, and let g be the piecewise-
linear function that goes from f(0) = 1 to f( 1

2n) = 0 to f(1) =
0; then both are in Fn, and |f( 1

2n) − g( 1
2n)| = |1 − 0| = 1, so

d∞(f, g) = 1.

Finally, let us argue that F1 ∩ F2 ∩ · · · is empty. Observe that
if f were in the intersection then for all n ≥ 1 and all x ≥ 1

n we
would have f(x) = 0, so for all x > 0 we would have f(x) = 0;
on the other hand, f(0) = 1, so f would not be continuous.

∗I see that I mistakenly wrote 5.6(c) on the assignment. Hopefully you figured out that
problem 5.6 didn’t have parts and I meant 5.7(c), but if you just did 5.6 that’s ok.
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