Solutions to Homework 5

5.2. Give examples to show that Theorem 5.4 can fail. ..

(a)

If the subsets U; are dense but not open.

Solution: Of course there are many possibilities for each of these,
but here’s one. Let X = R with the usual metric, let U; = Q, and
let Uy = R\ Q. Both are dense but not open, and U; N Us = @.

(If you feel you need to to include Us, Uy, ..., you can let them
all be Q, or R\ Q, or R.)

If the metric space X is not complete.

Solution: Let X = QQ with the usual metric inherited from R,
enumerate all the points of Q as x1,x9,z3,..., and let U; =
Q\ {z;}. Each U; is open and dense, but Uy NU;NUsN--- = @.
If the collection of open, dense subsets is uncountable.

Solution: Let X = R with the usual metric, and for each =z €
R take Uy = R\ {z}. Then each U, is open and dense, but

Nzer Uz = @.

5.3. Let (X, d) be any metric space (possibly incomplete), and let U,V C X
be two open, dense subsets. Prove that U NV is again dense.

Solution: Recall that a subset is dense if and only if it intersects
every non-empty open subset W C X. So let W be given, and let us
argue that W NU NV is not empty. Because U is dense, W intersects
U; let p e WNU. Because W and U are open, W N U is open, so
there is an 7 > 0 such that B,(p) C WNU. Because V is dense, B,(p)
intersects V. Because B,(p) C W NU we see that W NU NV is not
empty, which is what we wanted.



6.1.

(a)

Let f: R — R be defined by f(z) = 22. Find f(A) for the
following subsets A C R: the intervals [-1,1], [-1,1), (—1,1),
[0,1], [0,1), and (0,1), and the singletons {—1}, {0}, and {1}.

Solution:
f([ ) D = [07 1] f([_171)) = [07 1] f((=1,1)) = [071
f(0,1]) =[0,1]  f([0,1)) =[0,1]  f((0,1)) =[0,1
f{—1}) ={1} f({0}) = {0} S{1}) ={1}.

Now let f: X — Y be arbitrary, and let A, B C X. Prove that if
A C B then f(A) C f(B). Prove that f(AUB) = f(A) U f(B).
Prove that f(AN B) C f(A)N f(B), but give an example where
they are not equal.

Solution: First we show that if A C B then f(A) C f(B). Let
y € f(A), so there is an a € A such that f(a) = y. Because
A C B, we have a € B, so there is an a € B such that f(a) =y,

soy € f(B).

Next we show that f(A U B) = f(A) U f(B). First, we have
AC AUB, so f(A) C f(AUB), and similarly f(B) C f(AUB),
so f(A)U f(B) C f(AU B). For the reverse inclusion, let y €
f(AUB). Then there is an x € AU B such that f(z) = y. Either
x € A, in which case y = f(z) € f(A), or x € B, in which case
y = f(z) € f(B); in either case y € f(A) U f(B).

Next we show that f(ANB) C f(A)Nf(B). We have ANB C A,
so f(ANB) C f(A),and ANB C B,so f(ANB) C f(B).

Finally we give a counterexample to f(AN B) = f(A) N f(B )
Let f: R — R be the map f(z) = 22, let A = {~1} C

and let B = {1} ¢ R. Then f(A) = {1} and f(B) = {1}, so
f(A) N f(B) = {1}, but f(ANB) = f(2) = @.



6.2. (a) Let f: R — R be defined by f(z) = 2. Find f~1(B) for the
following subsets B C R: the intervals [—1,1], [-1,1), (—1,1),
[0,1], [0,1), and (0,1), and the singletons {—1}, {0}, and {1}.

Solution:

AL =151 (=L1) = (=141 T ((=11) = (-1,1)
o) =[=1,1]  fN0,1) = (=1,1)  f7H(0,1)) = (=1,0) U (0,1)
-1 =9 FH{o0}) = {0} S = {113

(b) Now let f: X — Y be arbitrary, and let A, B C Y. Prove that
if A C B then f~1(A) Cc f~}(B). Prove that f"1(AUB) =
Y AU f~YB), and that f~Y(ANB) = f~1(A)n f~YB).

Solution: First we show that if A C B then f~1(A) c f~4(B).
Let # € f~1(A). Then f(x) € A, so f(X) € B,sox € f~1(B).

Next we show that f~1(AUB) = f~1(A)Uf~(B). First, we have
A C AUB, so f71(A) ¢ f~Y(AU B), and similarly f~%(B) C
fYAUB),so fH(A) U fYB) c f~Y(AU B). For the reverse
inclusion, let * € f~1(AU B). Then f(z) € AU B; if f(x) € A
then z € f~1(A), and if f(z) € B then z € f~1(B), and in either
case v € f~H(A)Uf~Y(B). Thus f~{(AUB) C f~Y(A)Uf1(B).

Finally we show that f~1(ANB) = f~1(A) N f~1(B). First, we
have ANB C A, so f~Y(ANB) C f~}(A), and AN B C B, so
Y ANB) C f1(B); thus fY(ANB) c f~YA) N f~1(B). For
the reverse inclusion, let z € f~1(A) N f~Y(B); then x € f~1(A),
so f(r) € A, and z € f~1(B), so f(z) € B, so f(x) € AN B, so
r € f~YANB). Thus f~1(A)Nf~YB) C f~1(ANB) as desired.



5.7. Give examples to show that Proposition 5.6 can fail. ..

(c) If the diameters all finite, but do not go to zero.

Solution: Following the hint, take X = C([0,1]) with the sup
metric, and let F,, be the set of continuous functions f: [0,1] —
[0,1] with f(0) =1 and f(z) =0 for z > 2. We can see that

FlDFQD'--.

First let us argue that each F), is closed. Suppose that f1, fo,...
is a sequence of functions in F,, converging to a limit f € C([0, 1]).
By Example 1.8(c), evaluation at « = 0 is continuous in the sup
metric, so by Exercise 1.11 it preserves limits of sequences, so we
have

F(0) = Tim f(0) = 1.
k—o0
Similarly, for all z > % we have
fi(z) = lim fi(0) = 0.
k—00

For 0 <z < % we have 0 < fi(xz) < 1, and taking the limit as
k — oo we get 0 < f(z) < 1. Thus f € F,, as desired.

Next let us argue that diam(F;,) = 1. Given two functions f, g €
F,,, both functions take values in [0, 1], so |f(z) — g(z)| < 1 for
all x € [0,1], so do(f,g) < 1. Thus

diam F,, = sup doo(f,g) < 1.
f:9€Fn

It remains to produce two functions f, g € F,, with do(f,g) = 1.
Let f be the piecewise-linear function that goes from f(0) =1 to
f(%) =1 to f(%) = 0to f(1) = 0, and let g be the piecewise-
linear function that goes from f(0) = 1 to f(5) = 0 to f(1) =
0; then both are in F,, and |f(5) — g(5)| = [1 — 0] = 1, so
doo(f,9) = 1.

Finally, let us argue that Fy N Fy N --- is empty. Observe that
if f were in the intersection then for all n > 1 and all x > % we
would have f(x) = 0, so for all x > 0 we would have f(z) = 0;
on the other hand, f(0) =1, so f would not be continuous.

*I see that I mistakenly wrote 5.6(c) on the assignment. Hopefully you figured out that
problem 5.6 didn’t have parts and I meant 5.7(c), but if you just did 5.6 that’s ok.



