
Solutions to Homework 6

7.1. Prove that each of the four topologies on R given in Example 7.3 is a
topology, that is, it satisfies the three conditions in Definition 7.1.

(a) The finite complement topology: U ⊂ R is open if either R \U is
finite, or U = ∅.

Solution: The empty set ∅ is open by definition. To see that R
is open, note that R \ R = ∅ is finite.

Suppose that U and V are open. If U = ∅ or V = ∅ then
U ∩ V = ∅, which is open. Otherwise R \U and R \ V are finite,
so R \ (U ∩ V ) = (R \ U) ∪ (R \ V ) is a union of two finite sets,
hence is finite, so again U ∩ V is open.

Suppose that {Ui : i ∈ I} is a collection of open sets. If I is
empty, or every Ui is empty, then

⋃
i∈I Ui = ∅, which is open.

Otherwise there is some i0 ∈ I for which R \ Ui0 is finite. Then
R \

⋃
i∈I Ui ⊂ R \Ui0 is a subset of a finite set, hence is finite, so

again
⋃

i∈I Ui is open.

(b) The particular point topology: U ⊂ R is open if either 0 ∈ U , or
U = ∅.

Solution: The empty set ∅ is open by definition. To see that R
is open, note that 0 ∈ R.

We have ∅ ∈ T by definition, and R ∈ T because 0 ∈ R. .

Suppose that U and V are open. If U = ∅ or V = ∅ then
U ∩ V = ∅, which is open. Otherwise 0 ∈ U and 0 ∈ V , so
0 ∈ U ∩ V , so again U ∩ V is open.

Suppose that {Ui : i ∈ I} is a collection of open sets. If I is
empty, or every Ui is empty, then

⋃
i∈I Ui = ∅, which is open.

Otherwise there is some i0 ∈ I for which 0 ∈ Ui0 , so 0 ∈
⋃

i∈I Ui,
so again

⋃
i∈I Ui is open.
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(c) The lower semi-continuous topology: the open sets ∅, R, and
intervals of the form (a,∞).

Solution: The empty set ∅ and the whole set R are open by
definition.

Suppose that U and V are open. Observe we either have U ⊂ V ,
in which case U ∩ V = U , or V ⊂ U , in which case U ∩ V = V ,
and in either case U ∩ V is open.

Suppose that {Ui : i ∈ I} is a collection of open sets. If I is
empty, or every Ui is empty, then

⋃
i∈I Ui = ∅, which is open.

If some Ui = R, then
⋃

i∈I Ui = R, which is open. Otherwise we
can discard the empty Ui’s, shrinking the index set I if necessary,
and write each Ui as (ai,∞) for some ai ∈ R. If the set of left
endpoints {ai : i ∈ I} is unbounded below, then

⋃
i∈I Ui = R,

which is open. If it is bounded below, let a be its infimum; then⋃
i∈I Ui = (a,∞), which is again open.

(d) The lower limit topology: a subset U ⊂ R is open if it can be
written as a union of half-open intervals [a, b).

Solution: The empty set can be written as the union of an empty
collection of half-open intervals. The whole set R can be written
as

⋃
n∈Z[n, n+ 1).]

If U =
⋃

i∈I [ai, bi) and V =
⋃

j∈J [aj , bj), then

U ∩ V =
⋃

i∈I, j∈J
[ai, bi) ∩ [aj , bj).

But [ai, bi) ∩ [aj , bj) = [max(ai, aj),min(bi, bj)), with the under-
standing that this empty max(ai, aj) is greater than min(bi, bj).

Let’s not belabor
⋃

i∈I Ui, but just say that a union of unions of
[a, b)s is again a union of [a, b)s.
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7.2. Find the interiors, closures, and boundaries of the following subsets
A ⊂ R in the topologies from Example 7.3:

(a) Z ⊂ R in the finite complement topology.

Solution: A set is open in this topology if and only if its com-
plement is finite, or it is empty. Thus a set is closed if and only
if it is finite, or is the whole space R.

Now Z is infinite, so the only closed set containing Z is R, so Z̄ =
R. Similarly, R\Z is infinite, so R \ Z = R, so intZ = ∅, because
the closure of the complement is the complement of the interior,
as was true in metric spaces. Finally, ∂Z = Z̄\ intZ = R\∅ = R.

(b) {0} ⊂ R and {1} ⊂ R in the particular point topology.

Solution: A set is open in this topology if and only if it either
contains 0, or is empty. Thus a set is closed if and only if it either
does not contain 0, or is the whole space R.

Thus {1} is closed, and it contains no non-empty open set, so its
interior is ∅, its closure is {1}, and its boundary is {1}, just as
in the usual topology.

On the other hand, {0} is open, and it is not contained in any
closed set apart from the whole space R, so its interior is {0}, its
closure is R, and its boundary is (−∞, 0) ∪ (0,∞), quite unlike
the usual topology.

(c) (0, 1) ⊂ R in the lower semi-continuous topology.

Solution: The open sets in this topology are of the form (a,∞)
for a ∈ R, together with the empty set and the whole set R. Thus
the closed sets are of the form (−∞, a] for a ∈ R, together with
the whole set R and the empty set.

A closed set containing (0, 1) is either all of R, or of the form
(−∞, a] for some a ≥ 1. The closure of (0, 1) is the intersection
of all these, which is (−∞, 1]. The only open set contained in
(0, 1) is ∅, so its interior is ∅. Thus its boundary is (−∞, 1].

3



(d) (0, 1) ⊂ R in the lower limit topology.

Solution: We see that the interior of a subset is the union of all
half-open intervals [a, b) that it contains.

Thus (0, 1) is its own interior, because we can write

(0, 1) = [12 , 1) ∪ [13 , 1) ∪ [14 , 1) ∪ · · ·

To find the closure of [0, 1), let us find the interior of the comple-
ment (−∞, 0]∪ [1,∞). Taking the union of all half-open intervals
[a, b) contained in (−∞, 0]∪ [1,∞) gives (−∞, 0)∪ [1,∞). So the
closure of (0, 1) is the complement of that, namely [0, 1). (It may
seem strange that the closure is open, but it’s true.)

The boundary of (0, 1) is [0, 1) \ (0, 1) = {0}.

8.1. Let X be a topological space. Let Y ⊂ X, and give Y the subspace
topology. Let A ⊂ Y .

(a) Prove that if A is closed in Y and Y is closed in X, then A is
closed in X.

Solution: Because A is closed in Y , by Proposition 8.5 there is
a closed set F ⊂ X such that A = F ∩ Y . If Y is closed in X
then this is an intersection of closed sets, hence is closed in X.

(b) Give two examples to show that if A is closed in Y and Y is not
closed in X, then A may or may not be closed in X.

Solution: Let X = R with the usual topology, and let Y = [0, 3).
If we take A = [1, 2] then A is closed X, so A = A∩Y is closed in
Y . On the other hand, if we take A = [2, 3) then A is not closed
in X, but A = [2, 3] ∩ Y , so A is closed in Y .

(c) Prove that if A is open in Y and Y is open in X, then A is open
in X.

Solution: Because A is open in Y , there is an open set U ⊂ X
such that A = U∩Y . If Y is open in X then this is an intersection
of two open sets, hence is open in X.
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(d) Give two examples to show that if A is open in Y and Y is not
open in X, then A may or may not be open in X.

Solution: Let X = R with the usual topology, and let Y = [0, 3).
If we take A = (1, 2) then A is open X, so A = A ∩ Y is open in
Y . On the other hand, if we take A = [0, 1) then A is not open
in X, but A = (−1, 1) ∩ Y , so A is open in Y .

(e) Let A ⊂ Y , let clX(A) denote the closure of A in X, and let
clY (A) denote the closure of A in Y . Prove that

clY (A) = clX(A) ∩ Y.

Solution: First, clX(A) ∩ Y is closed in Y and contains A, so it
contains clY (A).

For the reverse inclusion, we know that clY (A) is closed in Y , so
there is a closed F ⊂ X such that clY (A) = F ∩ Y . But A ⊂ F ,
so clX(A) ⊂ F , so clX(A) ∩ Y ⊂ F ∩ Y = clY (A).

(f) Let A ⊂ Y , let intX(A) denote the interior of A as a subset of X,
and let intY (A) denote the interior of A as a subset of Y . Prove
that

intX(A) ⊂ intY (A).

Solution: We know that intX(A) is open in X, so intX(A) ∩ Y
is open in Y . But intX(A) ⊂ A and A ⊂ Y , so intX(A) ∩ Y =
intX(A). Thus intX(A) is open in Y and is contained in A, hence
is contained in intY (A).

(g) Give an example where the inclusion in part (f) is strict.

Solution: Let X = R, let Y = [0, 2], and let A = [0, 1]. Then
intX(A) = (0, 1), but intY (A) = [0, 1).

Or let X = R, let Y = Q, and let A = (0, 1)∩Q. Then A is open
in Y , so intY (A) = A, but intX(A) = ∅.
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8.2. (a) Let X be a topological space, and suppose that we can write
X = F1 ∪ . . . ∪ Fn, where each Fi is closed. Let Y be another
topological space, let f : X → Y , and let fi : Fi → Y be the
restriction of f to Fi: that is, for x ∈ Fi we set fi(x) = f(x).

Prove that f is continuous if and only if fi is continuous for all i.

Solution: We freely use Proposition 7.7, which states that a
map is continuous if and only if the preimage of every closed set
is closed.

Let G ⊂ Y be closed. Observe that

f−1
i (G) = f−1(G) ∩ Fi.

If f is continuous then f−1(G) is closed in X, so f−1(G) ∩ Fi is
closed in Fi by definition of the subspace topology. Thus fi is
continuous.

Conversely, suppose that fi is continuous for all i. Because X =
F1 ∪ . . . ∪ Fn, we have

f−1(G) = f−1(G) ∩ (F1 ∪ . . . ∪ Fn)

= (f−1(G) ∩ F1) ∪ . . . ∪ (f−1(G) ∩ Fn)

= f−1
1 (G) ∪ . . . ∪ f−1

n (G).

Because fi is continuous, we know that f−1
i (G) is closed in Fi,

hence is closed in X by Exercise 8.1(a). So f−1(G) is a finite
union of closed sets, hence is closed. Thus f is continuous.

(b) This is usually applied to show that a piecewise function is con-
tinuous. Consider the function f : [0, 1] → R defined by

f(x) =


0 if x ≤ 1/3,

3x− 1 if 1/3 ≤ x ≤ 2/3,

1 if x ≥ 2/3.

If we wanted to apply part (a) to show that f is continuous, which
should sets should we take for the Fi?

Solution: Take F1 = [0, 13 ], F2 = [13 ,
2
3 ], and F3 = [23 , 1]. It is

clear that the restriction of f to each of these is continuous, so f
is continuous by part (a).

6



7.3. (Optional.) Let (X, d) be a metric space. A function f : X → R is
called lower semi-continuous at a point p ∈ X if for every ϵ > 0 there
is a δ > 0 such that d(p, q) < δ implies f(q) > f(p) − ϵ. The idea is
that in the limit, f can only jump down. You can guess what upper
semi-continuous means.

(a) Let X = R with the usual metric, and consider the floor function
⌊x⌋, which returns the greatest integer ≤ x, and the ceiling func-
tion ⌈x⌉, which returns the least integer ≥ x. Which one is lower
semi-continuous, and which one is upper semi-continuous?

(You don’t have to prove it.)

Solution: The ceiling function is lower semi-continuous; the floor
function is upper semi-continuous.

If you wanted to prove it, you could start with the observation
that if η is close to zero, then ⌊x+ η⌋ ≤ ⌊x⌋, while ⌈x+ η⌉ ≥ ⌈x⌉.

(b) Prove that f : X → R is lower semi-continuous (at every point) if
and only if it is continuous as a map of topological spaces when
the codomain R is given the lower semi-continuous topology from
Example 7.3(c).

Solution: First suppose that f is lower semi-continuous at every
point. Take a subset U ⊂ R that’s open the lower semi-continuous
topology. If U = R then f−1(U) = X, which is open, and if
U = ∅ then f−1(U) = ∅, which is open. If U = (a,∞) for some
a ∈ R then f−1(U) = {p ∈ X : f(p) > a}; I claim that this too
open. Given a point p ∈ f−1(U), we have f(p) > a, so we can let
ϵ = f(p)− a > 0. Because f is lower semi-continuous, there is a
δ > 0 such that d(p, q) < δ implies f(q) > f(p) − ϵ = a, which
is equivalent to saying that q ∈ Bδ(p) implies f(q) ∈ U , or that
Bδ(p) ⊂ f−1(U). Thus f−1(U) is open, as desired.

Conversely, suppose that f is continuous when the codomain R is
given the lower semi-continuous topology. Let p ∈ X and ϵ > 0 be
given, and take U = (f(p)−ϵ,∞) ⊂ R, which is open in the lower
semi-continuous topology. Then f−1(U) is open in X, and we see
that p ∈ f−1(U), so there is δ > 0 such that Bδ(p) ⊂ f−1(U).
That is, if d(p, q) < δ then q ∈ f−1(U), which is true if and only
if f(q) ∈ U , which is true if and only if f(q) > f(p)− ϵ.
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7.4. (Alternate optional problem.) Let (X, d) be a metric space. A function
f : R → X is called continuous from the right at a point p ∈ R if
limq→p+ f(q) = f(p): that is, for every ϵ > 0 there is a δ > 0 such
that p ≤ q < p + δ implies d(f(p), f(q)) < ϵ. You can guess what
continuous from the left means.

(a) Again take X = R in the usual metric, and consider the floor and
ceiling functions. Which one is continuous from the right, and
which one is continuous from the left?

(You don’t have to prove it.)

Solution: The floor function is continuous from the right; the
ceiling function is continuous from the left.

(b) Prove that a map f : R → X is continuous from the right (at
every point) if and only if it is continuous as a map of topological
spaces when the domain R is given the lower limit topology from
Example 7.3(d).

Solution: First suppose that f is continuous from the right at
every point. We want to prove that for every open set U ⊂ X, the
preimage f−1(U) is open in the lower limit topology. It is enough
to prove that for every p ∈ f−1(U), there is a δ > 0 such that the
basic open set [p, p + δ) ⊂ f−1(U). So let U and p ∈ f−1(U) be
given. Then f(p) ∈ U , and because U is open, there is an ϵ > 0
such thatBϵ(f(p)) ⊂ U . Because f is continuous from the right at
p, there is a δ > 0 such that q ∈ [p, p+δ) implies f(q) ∈ Bϵ(f(p)),
which implies that f(q) ∈ U ; thus [p, p+δ) ⊂ f−1(U), as desired.

Conversely, suppose that f is continuous when the domain R is
given the lower limit topology. Let p ∈ X and ϵ > 0 be given,
and let U be the open ball Bϵ(f(p)) ⊂ X. Then f−1(U) is open
in the lower limit topology, so it can be written as a union of
intervals of the form [a, b); we see that p ∈ f−1(U), so we have
p ∈ [a, b) ⊂ f−1(U) for some a < b. Let δ = b − p, which is
positive. Then [p, p + δ) ⊂ [a, b) ⊂ f−1(U), so if q ∈ [p, p + δ)
then f(q) ∈ Bδ(f(p)), as desired.
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