
Solutions to Homework 7

9.7. Given a map f : X → Y , we can consider its graph

Γf = {(x, y) ∈ X × Y : y = f(x)}.

(a) Prove that if X and Y are topological spaces, Y is Hausdorff, and
f is continuous, then Γf is closed.

Hint: You could do this by hand, or you could consider the preim-
age of the diagonal ∆ ⊂ Y ×Y and under the mapX×Y → Y ×Y
that sends (x, y) to (f(x), y).

Solution: To do it by hand, let W = (X × Y ) \ Γf and let us
argue that W is open. Let (x, y) ∈ W , meaning that f(x) ̸= y.
Because Y is Hausdorff, there are disjoint open sets U, V ⊂ Y
with f(x) ∈ U and y ∈ V . Because f is continuous, f−1(U)
is open in X, and we see that (x, y) ∈ f−1(U) × V ; it remains
to prove that f−1(U) × V ⊂ W . Observe that if f−1(U) × V
intersected Γf , then there would be an x′ ∈ X with (x′, f(x′)) ∈
f−1(U)× V , which is to say that x′ ∈ f−1(U) and f(x′) ∈ V , so
f(x′) ∈ U and f(x′) ∈ V , which is impossible because U ∩V = ∅.

To do it the slick way, consider the projections p : X×Y → X and
q : X × Y → Y , which are continuous by Exercise 9.3 (which we
did in lecture). To see that the map X × Y → Y × Y that sends
(x, y) to (f(x), y) is continuous, observe that its two componets
are f ◦p and q, which are both continuous, and apply Proposition
9.4. Because Y is Hausdorff, the diagonal

∆ = {(y1, y2) ∈ Y × Y : y1 = y2}

is closed in Y ×Y by Proposition 9.6, so its preimage in X×Y is
closed. But its preimage is the set of points (x, y) ∈ X × Y such
that (f(x), y) ∈ ∆, that is, f(x) = y, which is exactly Γf .
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(b) Give an example of a function f : R → R that is not continuous
(in the usual topology) but whose graph is nonetheless closed.

Hint: It won’t work if f is bounded.

Solution: One possibility is

f(x) =

{
1/x x ̸= 0

0 x = 0.

The graph looks like this:

9.8. (a) Let X and Y be topological spaces, and suppose that Y is Haus-
dorff. Prove that if two continuous maps f, g : X → Y agree on
a dense subset D ⊂ X, then f = g.

Hint: Let E = {x ∈ X : f(x) = g(x)}, and prove that it’s closed.

Solution: The slick way is to consider the map f × g : X →
Y × Y , which sends a point x to (f(x), g(x), and observe that
E = (f × g)−1(∆). As in my solution to Exercise 9.7, ∆ is closed
by Proposition 9.6, f×g is continuous by Proposition 9.4, and the
preimage of a closed set is closed. Now E is closed and contains
D, so E contains D̄, but this is all of X because D is dense.

Or you can do it by hand as follows. Suppose there were some x ∈
X with f(x) ̸= g(x). Because Y is Hausdorff, there are disjoint
open sets U, V ⊂ Y with f(x) ∈ U and g(x) ∈ V . Thus x ∈
f−1(U)∩ g−1(V ), which is open because f and g are continuous.
In fact we see that every point x′ ∈ f−1(U) ∩ g−1(V ) satisfies
f(x′) ̸= g(x′), because f(x′) ∈ U and g(x′) ∈ V , and U ∩ V = ∅.
Thus f−1(U)∩g−1(V ) does not intersect D, but this is impossible
because a dense set intersects every non-empty open set.
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10.1. Endow R with the lower semi-continuous topology from Example 7.3(c).

(a) Prove that a subset A ⊂ R is compact in this topology if and
only if it is bounded below and contains its infimum.

Solution: First suppose that A ⊂ R is bounded below, let b =
inf A, and suppose that b ∈ A. Let {Ui : i ∈ I} be a covering
of A by subsets of R that are open in the lower semi-continuous
topology. Because b ∈ A, there is an i0 ∈ I such that b ∈ Ui0 ,
so either Ui0 = R or Ui0 = (a,∞) for some a < b. In either case
A ⊂ Ui0 , so Ui0 by itself gives us a finite subcover. Thus A is
compact.

Next let us argue that if A is compact, then A is bounded be-
low. The open sets U1, U2, . . . given by Um = (−m,∞) form
an open cover of A, because U1 ∪ U2 ∪ · · · = R. Because A is
compact, we can extract a finite subcover Um1 , . . . , Umk

. Let
M = max(m1, . . . ,mk); then

Um1 ∪ · · · ∪ Umk
= UM = (−M,∞),

and to say that this contains A is the same as saying that A is
bounded below by −M .

Finally let us argue that if A is bounded below but does not con-
tain b = inf A, then A is not compact. The open sets V1, V2, . . .
given by Vn = (b + 1

n ,∞) form an open cover of A, because
V1∪V2∪· · · = (b,∞). Given any finite subcollection Vn1 , . . . , Vnl

,
let N = max(n1, . . . , nl); then

Vn1 ∪ · · · ∪ Vnl
= VN = (b+ 1

N ,∞).

If this contained A, then b + 1
N would be a lower bound for A,

but it is not, because b is the greatest lower bound. Thus our
open cover has no finite subcover, so A is not compact.
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(b) Let X be a compact space, and let f : X → R be lower semi-
continuous, that is, continuous with respect to the lower semi-
continuous topology on R. Prove that f achieves its minimum,
that is, there is a point p ∈ X such that f(p) ≤ f(x) for all
x ∈ X.

Solution: We proved in lecture that the continuous image of
a compact set is compact, so f(X) ⊂ R is compact in the lower
semi-continuous topology, so f(x) contains it infimum by part (a).
Let b = inf f(X), and choose a point p ∈ X such that f(p) = b.
Then f(p) ≤ f(x) for all x ∈ X.

10.2. Endow R with the lower limit topology from Example 7.3(d). Prove
that the subset [0, 1] is not compact.

Solution: Consider the open sets

[0, 12), [
1
2 ,

2
3), [

2
3 ,

3
4), . . . , [1, 2).

Their union is [0, 2) so they form an open cover of [0, 1]. But we see
that the union of any finite subcollection will not contain [0, 1], because
it will miss [ n

n+1 , 1) for some n.

10.4. (Optional.)

(a) Let X be a Hausdorff space. By definition, distint points of X
have disjoint neighborhoods. In the proof of Proposition 10.6 we
saw that a compact subset A and a point p /∈ A have disjoint
neighborhoods. Prove that two disjoint compact sets A,B ⊂ X
have disjoint neighborhoods, that is, there are open sets U, V ⊂ X
with A ⊂ U , B ⊂ V , and U ∩ V = ∅.

Solution: We follow the second paragraph of the proof of Propo-
sition 10.6. For every point b ∈ B, there are disjoint open sets
Ub ⊃ A and Vb ∋ b, as it says in the statement of the problem.
As b varies, the Vbs form an open cover of B, so we can extract
a finite subcover: that is, we can choose b1, b2, . . . , bn ∈ B such
that B ⊂ Vb1 ∪ Vb2 ∪ · · · ∪ Vbn . Let U = Ub1 ∩ · · · ∩ Ubn , and let
V = Vb1 ∪ · · · ∪ Vbn ; we see that U and V are disjoint, open, and
we have A ⊂ U and B ⊂ V , which is what we wanted.
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(b) Give an example of a non-Hausdorff space X, a compact subset
A ⊂ X, and a point p ∈ X \ A such that every neighborhood of
p meets every neighborhood of A.

Solution: The cheap answer is to let X be any set with the
indiscrete topology and at least two distinct points p, q ∈ X, and
let A = {q}. Then A is compact (because it is finite), but p is
only contained in one open set – the whole space X – and the
same is true of A.

For a nicer example, let X = R with the lower semi-continuous
topology, let A = [1, 2), which is compact by Exercise 10.1(a),
and let p = 0. An open set containing p is either R or (b,∞) for
some b < 0, and in either case it contains A, so it certainly meets
any open set that contains A.

(c) Give an example of two subsets A,B ⊂ Rn that do not have dis-
joint neighborhoods. (Of course they cannot both be compact.)

Solution: In R2, let A = B̄1((−1, 0)) and B = B1((1, 0)).

Then (0, 0) is both in A and in the closure of B, so any open
set that contains A must intersect B, and thus any open set that
contains B.
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