Solutions to Homework 7

9.7. Given a map f: X — Y, we can consider its graph

Ly={(z,y) e X xY :y=f(z)}.

(a) Prove that if X and Y are topological spaces, Y is Hausdorff, and
f is continuous, then I'y is closed.
Hint: You could do this by hand, or you could consider the preim-
age of the diagonal A C Y xY and under the map X xY — Y xY
that sends (z,y) to (f(x),y).

Solution: To do it by hand, let W = (X x Y) \ I'y and let us
argue that W is open. Let (z,y) € W, meaning that f(z) # y.
Because Y is Hausdorff, there are disjoint open sets U,V C Y
with f(z) € U and y € V. Because f is continuous, f~(U)
is open in X, and we see that (x,y) € f~1(U) x V; it remains
to prove that f~1(U) x V. C W. Observe that if f~1(U) x V
intersected T'f, then there would be an &’ € X with (2/, f(2')) €
f~Y(U) x V, which is to say that 2’ € f~1(U) and f(2') € V, so
f(z') € U and f(2') € V, which is impossible because UNV = @.

To do it the slick way, consider the projections p: X xY — X and
q: X xY =Y, which are continuous by Exercise 9.3 (which we
did in lecture). To see that the map X x Y — Y x Y that sends
(z,y) to (f(x),y) is continuous, observe that its two componets
are fop and ¢, which are both continuous, and apply Proposition
9.4. Because Y is Hausdorff, the diagonal

A={(y1,y2) €Y xY :y1 =42}

is closed in Y x Y by Proposition 9.6, so its preimage in X X Y is
closed. But its preimage is the set of points (x,y) € X x Y such
that (f(z),y) € A, that is, f(x) =y, which is exactly I'y.



9.8.

(b)

Give an example of a function f: R — R that is not continuous
(in the usual topology) but whose graph is nonetheless closed.

Hint: It won’t work if f is bounded.
Solution: One possibility is

)1z z#0
f(x)_{o z=0.

The graph looks like this:

Let X and Y be topological spaces, and suppose that Y is Haus-
dorff. Prove that if two continuous maps f,g: X — Y agree on
a dense subset D C X, then f =g.

Hint: Let E = {z € X : f(x) = g(x)}, and prove that it’s closed.

Solution: The slick way is to consider the map f x g: X —
Y x Y, which sends a point x to (f(z),g(z), and observe that
E = (f xg)~Y(A). As in my solution to Exercise 9.7, A is closed
by Proposition 9.6, f X g is continuous by Proposition 9.4, and the
preimage of a closed set is closed. Now F is closed and contains
D, so E contains D, but this is all of X because D is dense.

Or you can do it by hand as follows. Suppose there were some x €
X with f(x) # g(x). Because Y is Hausdorff, there are disjoint
open sets U,V C Y with f(z) € U and g(z) € V. Thus z €
Y (U)N g1 (V), which is open because f and g are continuous.
In fact we see that every point 2/ € f~1(U) N g~ (V) satisfies
f(2') # g(a), because f(2') € U and g(2/) € V,and UNV = @.
Thus f~1(U)Ng~ (V) does not intersect D, but this is impossible
because a dense set intersects every non-empty open set.



10.1. Endow R with the lower semi-continuous topology from Example 7.3(c).

(a) Prove that a subset A C R is compact in this topology if and
only if it is bounded below and contains its infimum.

Solution: First suppose that A C R is bounded below, let b =
inf A, and suppose that b € A. Let {U; : i € I} be a covering
of A by subsets of R that are open in the lower semi-continuous
topology. Because b € A, there is an iy € I such that b € Uj,,
so either U;; = R or Uj, = (a,00) for some a < b. In either case
A C Uy, so U, by itself gives us a finite subcover. Thus A is
compact.

Next let us argue that if A is compact, then A is bounded be-
low. The open sets Uy, Us,... given by U,, = (—m,c0) form

an open cover of A, because Uy UUs U--- = R. Because A is
compact, we can extract a finite subcover Up,,,...,Un,. Let
M = max(mi,...,mg); then

Un, U UUp, =Uyn = (—M,00),
and to say that this contains A is the same as saying that A is
bounded below by —M.

Finally let us argue that if A is bounded below but does not con-
tain b = inf A, then A is not compact. The open sets Vi, V5, ...

given by V,, = (b + %,oo) form an open cover of A, because
ViuVaU- - = (b,00). Given any finite subcollection V,,, ..., Vy,,
let N = max(nq,...,n;); then

Vi, U UVy, =Vy = (b+ 3, 00).

If this contained A, then b + % would be a lower bound for A,
but it is not, because b is the greatest lower bound. Thus our
open cover has no finite subcover, so A is not compact.



(b) Let X be a compact space, and let f: X — R be lower semi-
continuous, that is, continuous with respect to the lower semi-
continuous topology on R. Prove that f achieves its minimum,
that is, there is a point p € X such that f(p) < f(z) for all
rzeX.

Solution: We proved in lecture that the continuous image of
a compact set is compact, so f(X) C R is compact in the lower
semi-continuous topology, so f(z) contains it infimum by part (a).
Let b = inf f(X), and choose a point p € X such that f(p) = b.
Then f(p) < f(z) for all x € X.

10.2. Endow R with the lower limit topology from Example 7.3(d). Prove
that the subset [0, 1] is not compact.

Solution: Consider the open sets

0,5): 15 8): [5: 35 [1,2):

Their union is [0,2) so they form an open cover of [0,1]. But we see
that the union of any finite subcollection will not contain [0, 1], because
it will miss | for some n.
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10.4. (Optional.)

(a) Let X be a Hausdorff space. By definition, distint points of X
have disjoint neighborhoods. In the proof of Proposition 10.6 we
saw that a compact subset A and a point p ¢ A have disjoint
neighborhoods. Prove that two disjoint compact sets A, B C X
have disjoint neighborhoods, that is, there are open sets U,V C X
with ACU,BCV,andUNV =g.

Solution: We follow the second paragraph of the proof of Propo-
sition 10.6. For every point b € B, there are disjoint open sets
Uy, D A and V 3 b, as it says in the statement of the problem.
As b varies, the Vs form an open cover of B, so we can extract
a finite subcover: that is, we can choose by, bo,...,b, € B such
that BC Vp, UVp, U--- UV, . Let U =Uy, N---NUp,, and let
V=V,U---UV, ; wesee that U and V are disjoint, open, and
we have A C U and B C V, which is what we wanted.



(b) Give an example of a non-Hausdorff space X, a compact subset
A C X, and a point p € X \ A such that every neighborhood of
p meets every neighborhood of A.

Solution: The cheap answer is to let X be any set with the
indiscrete topology and at least two distinct points p, ¢ € X, and
let A = {q}. Then A is compact (because it is finite), but p is
only contained in one open set — the whole space X — and the
same is true of A.

For a nicer example, let X = R with the lower semi-continuous
topology, let A = [1,2), which is compact by Exercise 10.1(a),
and let p = 0. An open set containing p is either R or (b, 00) for
some b < 0, and in either case it contains A, so it certainly meets
any open set that contains A.

(c) Give an example of two subsets A, B C R™ that do not have dis-
joint neighborhoods. (Of course they cannot both be compact.)

Solution: In R?, let A = B;((—1,0)) and B = B;((1,0)).
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Then (0,0) is both in A and in the closure of B, so any open
set that contains A must intersect B, and thus any open set that
contains B.



