
Solutions to Midterm 1

1. (a) (3 points) Let (X, d) be a metric space. Define what it means for
a sequence p1, p2, . . . in X to converge to a limit ℓ ∈ X.

Solution: For every ϵ > 0 there is a natural number N such that
for all n ≥ N we have d(pn, ℓ) < ϵ.

(b) (5 points) Let p1, p2, . . . and q1, q2, . . . be two sequences in X, and
suppose that pn → ℓ and d(pn, qn) → 0 as n → ∞. Prove that
qn → ℓ.

Solution: Let ϵ > 0 given. Because pn → ℓ, we can choose an
N1 such that for all n ≥ N1 we have d(pn, ℓ) < ϵ/2. Because
d(pn, qn) → 0, we can choose an N2 such that for all n ≥ N2 we
have d(pn, qn) < ϵ/2. Let N = max{N1, N2}; then for all n ≥ N
we have

d(qn, ℓ) ≤ d(qn, pn) + d(pn, ℓ) < ϵ/2 + ϵ/2 = ϵ,

where the first inequality is the triangle inequality.



2. (a) (3 points) Let (X, d) be a metric space. Define what it means for
a subset A ⊂ X to be open.

Solution: For every point p ∈ A there is an r > 0 such that the
ball Br(p) ⊂ A, or if you prefer, for every q ∈ X with d(p, q) < r
we have q ∈ A.

(b) (3 points) Write out what it means for a subset A ⊂ X not to be
open – that is, write out the negation of part (a).

Solution: There is a point p ∈ A such that for every r > 0 there
is a point q ∈ X with d(p, q) < r but q /∈ A.

(c) (5 points) In C([0, 1]), letA be the set of functions f with f(0) > 0.
Prove that A is open in the sup metric.

Solution: Let f ∈ A be given, and let r = f(0) > 0. If g ∈ Br(f)
then d∞(g, f) < r, so |g(x) − f(x)| < r for all x ∈ [0, 1], an in
particular |g(0) − f(0)| < r. Thus f(0) − r < g(0) < f(0) + r,
that is, 0 < g(0) < 2f(0), so g ∈ A.

(d) (5 points) Prove that the same set A ⊂ C([0, 1]) is not open in
the L1 metric.

Solution: Let f be the constant function 1, which is in A, and
let r > 0 be given. If r > 1, let g be the constant function 0;
then d1(f, g) =

∫
|f − g| = 1 < r, so g ∈ Br(f), but g(0) = 0 so

g /∈ A. More interestingly, if r ≤ 1, let g be the function that goes
piecewise-linearly from g(0) = 0 to g(r) = 1 to g(1) = 1:

Then d1(f, g) =
∫
|f − g| is the area of a triangle whose height is

1 and width is r, so the area is r/2 < r. So again g ∈ Br(f), but
g(0) = 0 so g /∈ A.

With a little more effort we could have proved that the interior of
A is empty in this metric.



3. (a) (3 points) Let (X, d) be a metric space, and let A ⊂ X. Define
the interior, closure, and boundary of A.

Solution: The interior is the set of points p ∈ A for which there
is an r > 0 such that Br(p) ⊂ A. The closure is the set of points
p ∈ X for which there is a sequence p1, p2, . . . ∈ A converging to
p. The boundary is the closure minus the interior.

(b) (5 points) Prove that A \B ⊂ Ā \ intB. You may use anything
proved in lecture or on the homework.

Solution: Let C = X \B, so A\B = A∩C. From homework we
know thatA ∩ C ⊂ Ā∩C̄, and from lecture we know C̄ = X\intB,
so Ā ∩ C̄ = Ā \ intB.

Alternatively you could say that A ⊂ Ā and intB ⊂ B, so Ā\intB
contains A \B, and it’s closed (because it’s an intersection of two
closed sets, Ā and X \ intB), so it contains A \B.

(c) (3 points) Give an example to show that the inclusion in part (b)
can be strict.

Solution: You might take A = [0, 2] and B = [0, 1] in R with the
usual metric. Then A \B = (1, 2], whose closure is [1, 2], but

Ā \ intB = [0, 2] \ (0, 1) = {0} ∪ [1, 2],

which is bigger.

You could also take A = B = {0}, but this feels too smart-alecky.


