Solutions to Midterm 1. Let $$A = \begin{pmatrix} 5 & 1 \\ 2 & 4 \end{pmatrix}$$. (a) Find the eigenvalues of A. Solution: The characteristic polynomial is $$\lambda^2 - 9\lambda + 18 = (\lambda - 3)(\lambda - 6),$$ so the eigenvalues are 3 and 6. (b) Find eigenvectors for those eigenvalues. Solution: For $\lambda = 3$ we can take any multiple of $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$. For $\lambda = 6$ we can take any multiple of $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$. (c) Find the general solution of X' = AX. Solution: $X(t) = \alpha e^{3t} \begin{pmatrix} 1 \\ -2 \end{pmatrix} + \beta e^{6t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ (d) Sketch the phase portrait. (e) If X(t) is a solution of X' = AX with $X(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, find X(1). What quadrant is it in? Does this agree with your picture? **Solution:** In the general solution from part (c) we need $\alpha = 1/3$ and $\beta = 2/3$, so $$X(1) = \begin{pmatrix} \frac{1}{3}e^3 + \frac{2}{3}e^6 \\ -\frac{2}{3}e^3 + \frac{2}{3}e^6 \end{pmatrix} \approx \begin{pmatrix} 275.6 \\ 255.6 \end{pmatrix}.$$ This is in the first quadrant, which agrees with my picture. - 2. Consider the second-order equation x'' + x' 2x = 0. - (a) Convert this to a first-order system in two variables, find the eigenvalues and eigenvectors, and sketch the phase portrait. Solution: We set y = x', so $$x' = 0x + 1y$$ $$y' = 2x - 1y.$$ SO $$A = \begin{pmatrix} 0 & 1 \\ 2 & -1 \end{pmatrix}.$$ The characteristic polynomial is $$\lambda^2 + \lambda - 2 = (\lambda - 1)(\lambda + 2),$$ so the eigenvalues are 1 and -2. For the 1-eigenvector we can take any multiple of $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$. For the (-2)-eigenvector we can take any multiple of $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$. The phase diagram is as shown: (b) For which initial conditions, i.e. for which values of x(0) and x'(0), do we have $x(t) \to \infty$ as $t \to \infty$? For which do we have $x(t) \to 0$? For which do we have $x(t) \to -\infty$? **Solution:** From the picture we see that if we start with y > -2x then we approach the line y = x and head off to ∞ . That is, if x'(0) > -2x(0) then $x(t) \to \infty$ as $t \to \infty$. Similarly, if x'(0) < -2x(0) then $x(t) \to -\infty$. If x'(0) = -2x(0) then $x(t) \to 0$; concretely, the solution is $$x(t) = e^{-2t}x(0).$$ 3. Let $$A = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda + \epsilon \end{pmatrix}$$. (a) Find the eigenvalues of A. **Solution:** Since A is upper-triangular, we can read the eigenvalues off the diagonal: λ and $\lambda + \epsilon$. (b) If $\epsilon > 0$, find eigenvectors for those eigenvalues. **Solution:** For the λ -eigenvector we can take $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ For the $(\lambda + \epsilon)$ -eigenvector we can take $\begin{pmatrix} 1 \\ \epsilon \end{pmatrix}$. (c) Let T be the matrix whose columns are those eigenvectors. Find T^{-1} . Check that $T^{-1}T = I$ or $TT^{-1} = I$. Solution: We have $T = \begin{pmatrix} 1 & 1 \\ 0 & \epsilon \end{pmatrix}$, so $T^{-1} = \begin{pmatrix} 1 & -1/\epsilon \\ 0 & 1/\epsilon \end{pmatrix}$. We check: $$TT^{-1} = \begin{pmatrix} 1 & 1 \\ 0 & \epsilon \end{pmatrix} \begin{pmatrix} 1 & -1/\epsilon \\ 0 & 1/\epsilon \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$ $$T^{-1}T = \begin{pmatrix} 1 & -1/\epsilon \\ 0 & 1/\epsilon \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & \epsilon \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$ (d) Check that $T^{-1}AT = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda + \epsilon \end{pmatrix}$. Solution: $$\begin{pmatrix} 1 & -1/\epsilon \\ 0 & 1/\epsilon \end{pmatrix} \begin{pmatrix} \lambda & 1 \\ 0 & \lambda + \epsilon \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & \epsilon \end{pmatrix}$$ $$= \begin{pmatrix} \lambda & -\lambda/\epsilon \\ 0 & \lambda/\epsilon + 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & \epsilon \end{pmatrix}$$ $$= \begin{pmatrix} \lambda & 0 \\ 0 & \lambda + \epsilon \end{pmatrix}$$ (e) Show that if $\epsilon = 0$ then there is no T such that $T^{-1}AT = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$. Hint: What is $T \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} T^{-1}$? Solution: If $T^{-1}AT = \lambda I$ then $A = T \cdot \lambda I \cdot T^{-1} = \lambda T \cdot T^{-1} = \lambda I$. But $A \neq \lambda I$, so there can be no such T. (f) What happens to T^{-1} from part (d) as $\epsilon \to 0$? Solution: The second column blows up. It is also interesting to note that $\det T = \epsilon \to 0$, so T stops being invertible.