Homework 3

Due Monday, October 21, 2019

1. Let $f: X \to Y$ be an arbitrary map of sets. The *image* of a subset $A \subset X$ is

$$f(A) = \{ f(a) : a \in A \},$$

or equivalently

$$f(A) = \{ y \in Y : y = f(a) \text{ for some } a \in A \}.$$

This is a subset of Y.

- (a) Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2$. Find f(A) for the following subsets $A \subset \mathbb{R}$: the intervals [-1,1], [-1,1), (-1,1), [0,1], [0,1), and (0,1), and the singletons $\{-1\}$, $\{0\}$, and $\{1\}$.
- (b) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by f(x,y) = x. Choose a few subsets $A \subset \mathbb{R}^2$ and sketch both A and f(A).
- (c) Now let $f: X \to Y$ be arbitrary, and let $A, B \subset X$. Show that if $A \subset B$ then $f(A) \subset f(B)$. Show that $f(A \cup B) = f(A) \cup f(B)$. Show that $f(A \cap B) \subset f(A) \cap f(B)$, but give an example where the two are not equal.
- 2. Let $f: X \to Y$ be an arbitrary map of sets. The *preimage* of a subset $B \subset Y$ is

$$f^{-1}(B) = \{x \in X : f(x) \in B\},\$$

or equivalently

$$f^{-1}(B) = \{x \in X : f(x) = b \text{ for some } b \in B\}.$$

This is a subset of X.

- (a) Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2$. Find $f^{-1}(B)$ for the following subsets $B \subset \mathbb{R}$: the intervals [-1,1], [-1,1), (-1,1), [0,1], [0,1), and (0,1), and the singletons $\{-1\}$, $\{0\}$, and $\{1\}$.
- (b) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by f(x, y) = xy. Sketch $f^{-1}(B)$ when B is $\{0\}, \{1\}, [0, 1], (0, 1), \text{ and } [0, 1).$
- (c) Now let $f: X \to Y$ be arbitrary, and let $A, B \subset Y$. Show that if $A \subset B$ then $f^{-1}(A) \subset f^{-1}(B)$. Show that $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$, and that $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$.
- 3. Let $f: X \to Y$, let $A \subset X$, and let $B \subset Y$.
 - (a) Show that $A \subset f^{-1}(B)$ if and only if $f(A) \subset B$.
 - (b) Show that $A \subset f^{-1}(f(A))$. Show that equality holds if f is injective. Give an example to show that equality need not hold in general.
 - (c) Show that $f(f^{-1}(B)) \subset B$. Show that equality holds if f is surjective. Give an example to show that equality need not hold in general.
- 4. (a) The function $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} x & \text{if } x \le 0\\ x+1 & \text{if } x > 0 \end{cases}$$

is discontinuous (with the usual topology on \mathbb{R}). Exhibit an open set $V \subset \mathbb{R}$ such that $f^{-1}(V)$ is not open.

(b) Optional: The function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

is discontinuous (with the usual topology on \mathbb{R}^2 and \mathbb{R}). Exhibit an open set $V \subset \mathbb{R}$ such that $f^{-1}(V)$ is not open.

- 5. Optional: A map $f: X \to Y$ is called *open* if for every open set $U \subset X$, the image f(U) is open in Y.
 - (a) Give an example of a continuous map that is not open.
 - (b) Give an example of an open map that is not continuous.
 - (c) Give an example of a map that is both continuous and open.
 - (d) Give an example of a map that is neither continuous nor open.
- 6. What is one question you have about last week's lectures?