Homework 4

Due Monday, October 28, 2019

Do either 1 or 1'. But read them both.

- 1. Let X be a topological space and $A \subset X$. The *closure* of A, denoted \bar{A} , is the intersection of all closed sets containing A.
 - (a) Show that \bar{A} is the smallest closed subset of X containing A, in the following sense: if $A \subset F \subset X$ and F is closed, then $\bar{A} \subset F$.
 - (b) Show that if $A \subset B \subset X$ then $\bar{A} \subset \bar{B}$.
 - (c) Show that $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
 - (d) Show that $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$. Give an example where the inclusion is strict.
- 1'. Let X be a topological space and $A \subset X$. The *interior* of A, denoted int A, or sometimes A° , is the union of all open sets contained in A.
 - (a) Show that int A is the biggest open subset of A, in the following sense: if $U \subset A$ and U is open, then $U \subset \operatorname{int} A$.
 - (b) Show that if $A \subset B \subset X$ then int $A \subset \text{int } B$.
 - (c) Show that int $A \cap \text{int } B = \text{int}(A \cap B)$.
 - (d) Show that int $A \cup \text{int } B \subset \text{int}(A \cup B)$. Give an example where the inclusion is strict.
- 2. Let X be a topological space and $A \subset X$.
 - (a) Show that $X \setminus \overline{A} = \operatorname{int}(X \setminus A)$, and $X \setminus \operatorname{int} A = \overline{X \setminus A}$.
 - (b) The boundary of A, denoted ∂A , is defined to be $\bar{A} \setminus \text{int } A$. Show that $\partial A = \partial (X \setminus A)$.

- 3. Find the closure, interior, and boundary of each subset of \mathbb{R}^2 (in the usual topology):
 - (a) $A_1 = \{(x, y) : 0 < x \le 1, 0 \le y < 1\}$
 - (b) $A_2 = \{(x, y) : 0 < x \le 1, y = 0\}$
 - (c) $A_3 = \{(x, y) : x \in \mathbb{Q} \text{ or } y \in \mathbb{Q} \}$

Do two of the next three problems. Optional: Do all three.

- 4. Let X be a set, and let T be the set of subsets $U \subset X$ that such that $X \setminus U$ is finite, together with the empty set.
 - (a) Show that T is a topology. (It is called the "finite complement topology.")
 - (b) Find the closure, interior, and boundary of \mathbb{Z} as a subset of \mathbb{R} in the finite complement topology.
- 5. Let T be the set of subsets $U \subset \mathbb{R}$ such that U contains 0, together with the empty set.
 - (a) Show that T is a topology.
 - (b) Find the closure, interior, and boundary of the one-point subsets $\{1\}$ and $\{0\}$.
- 6. Let T be the subsets of \mathbb{R} of the form (a, ∞) for some $a \in \mathbb{R}$, together with the empty set and the whole set \mathbb{R} .
 - (a) Show that T is a topology. (It is called the "lower semi-continuous topology" and we discussed it in lecture on Friday.)
 - (b) Find the closure, interior, and boundary of the interval (0,1) as a subset of \mathbb{R} in this topology.
- 7. Optional, due in two weeks (11/4): Read "The emergence of open sets, closed sets, and limit points in analysis and topology" by Gregory H. Moore, which is linked on Canvas and on the course web page.
 - (a) What is one thing you read that confused you?
 - (b) What is one thing you read that surprised you?
- 8. What is one question you have about last week's lectures?