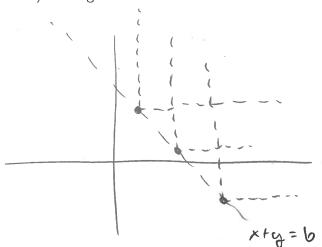
Homework 6

Due Monday, November 11, 2019

This week, \mathbb{R} always has the usual topology.

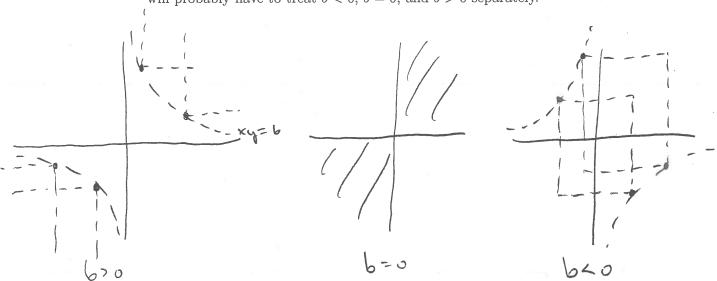
- 1. Show that the addition map $a \colon \mathbb{R}^2 \to \mathbb{R}$, defined by a(x,y) = x + y, is continuous. Fill in the details of the following outline.
 - (a) For all $b \in \mathbb{R}$, the inverse image of the interval $(b, \infty) \subset \mathbb{R}$ is a union of (infinite) rectangles as shown:



Hence $a^{-1}((b,\infty))$ is open, by definition of the product topology on \mathbb{R}^2 .

- (b) Similarly, $a^{-1}((-\infty,c))$ is open for all $c \in \mathbb{R}$. (Just copy this sentence and leave it at that.)
- (c) If X is any topological space and $f: X \to \mathbb{R}$ a map with the property that $f^{-1}((b,\infty))$ and $f^{-1}((-\infty,c))$ are open for all $b,c \in \mathbb{R}$, then f is continuous.

2. Optional: Same but with the multiplication map m(x, y) = xy. You will probably have to treat b < 0, b = 0, and b > 0 separately.



- 3. Consider the equivalence relation on $\mathbb R$ defined by saying that $x\sim y$ if x=ay for some a>0.
 - (a) Show that this is an equivalence relation: reflexive, symmetric, and transitive.
 - (b) Describe the equivalence classes. Hint: There are finitely many.
 - (c) Describe the quotient topology on \mathbb{R}/\sim . What are the open sets?
- 4. Let $p \colon X \to Y$ be a continuous surjection.
 - (a) Show that if p is open that is, if f(U) is open in Y for every open set $U \subset X$ then p is a quotient map.
 - (b) Show that if p is closed that is, if f(F) is closed in Y for every closed set $F \subset X$ then p is a quotient map.
- 5. Let $X = \{(x,y) \in \mathbb{R}^2 : x \ge 0 \text{ or } y = 0\}$, let $Y = \mathbb{R}$, and let $p: X \to Y$ be the map p(x,y) = x. Show that p is neither open, nor closed, but that it is a quotient map.
- 6. What is one question you have about last week's lectures?