Homework 8

Due Monday, November 25, 2019

- 1. Let X be a topological space. Define a relation \sim on X by declaring that $p \sim q$ iff there is a path from p to q, that is, a continuous map $\gamma \colon [0,1] \to X$ such that $\gamma(0) = p$ and $\gamma(1) = q$.
 - (a) Show that this is an equivalence relation: reflexive, symmetric, and transitive. Hint: The interesting one is transitive.
 - (b) The equivalence classes of this equivalence relation are called are called *path components*. Describe (without proof) the path components of the following spaces:
 - i. $\{(x,y) \in \mathbb{R}^2 : xy > 1\}$.
 - ii. O
 - iii. The topologist's sine curve.
- 2. Let X be a topological space. Define a relation \sim on X by declaring that $p \sim q$ iff there is a connected subspace $A \subset X$ containing p and q.
 - (a) Show that this is an equivalence relation: reflexive, symmetric, and transitive. Hint: The interesting one is transitive.
 - (b) The equivalence classes of this equivalence relation are called are called *connected components*. Describe (without proof) the connected components of the following spaces:
 - i. $\{(x,y) \in \mathbb{R}^2 : xy > 1\}$.
 - ii. Q.
 - iii. The topologist's sine curve.
 - (c) Let $p \in X$, let P be the path component of p, and let C be the connected component of p. Show that $P \subset C$.

- 3. (a) Let X be a connected space, and let \sim be an equivalence relation on X. Show that if the equivalence classes of \sim are open then every point in X is equivalent to every other point.
 - (b) Show that a connected open subset $U \subset \mathbb{R}^n$ is path-connected. Hint: Show that the path components of U are open.
- 4. Optional: For the following topological spaces X, describe the quotient topology on X/\sim , where \sim is the equivalence relation from problem 1 (not problem 2):
 - (a) The topologist's sine curve.
 - (b) Q
 - (c) $\left[\frac{1}{2}, 1\right] \cup \left[\frac{1}{4}, \frac{1}{3}\right] \cup \left[\frac{1}{6}, \frac{1}{5}\right] \cup \cdots$
- 5. If you've seen a little algebraic topology, read this problem and think about it, but don't write it up. Let X be a metric space, let $x_0 \in X$, and let Ω be the space of loops based at x_0 , that is, the set of continuous maps $\gamma \colon [0,1] \to X$ with $\gamma(0) = \gamma(1) = x_0$, endowed with the sup metric.
 - (a) A path in Ω is a homotopy.
 - (b) The space X is semi-locally simply connected if and only if the quotient topology on the space of path components Ω/\sim , where \sim is the equivalence relation from problem 1, is discrete.
- 6. What is one question you have about last week's lectures?