Solutions to Final Exam

1. (a) Define what it means for a topological space X to be connected.

Solution: X is disconnected if we can write $X = U \cup V$, where U and V are open, disjoint, and non-empty. X is connected if it is not disconnected.

Many equivalent formulations are also acceptable.

(b) Show that X is disconnected if and only if there is a continuous surjection $f : X \to Z$, where $Z = \{1, 2\}$ with the discrete topology. (Recall that the discrete topology means every subset is open.)

Solution: First suppose that there is a continuous surjection $f : X \to Z$. Let $U = f^{-1}(\{1\})$ and $V = f^{-1}(\{2\})$. We have

$$X = f^{-1}(Z) = f^{-1}(\{1\} \cup \{2\}) = f^{-1}(\{1\}) \cup f^{-1}(\{2\}) = U \cup V.$$

Because $\{1\}$ and $\{2\}$ are open in Z and f is continuous, U and V are open in X. Because $\{1\}$ and $\{2\}$ are disjoint and f^{-1} preserves intersections, U and V are disjoint. Because f is surjective, U and V are non-empty. Thus X is disconnected.

Conversely, suppose that X is disconnected, and write $X = U \cup V$, where U and V are open, disjoint, and non-empty. Define $f : X \to Z$ by

$$f(x) = \begin{cases}
1 & \text{if } x \in U, \\
2 & \text{if } x \in V.
\end{cases}$$

Because $X = U \cup V$, f is defined everywhere, and because U and V are disjoint, it is well-defined. Because U and V are non-empty,
it is surjective. To see that \(f \) is continuous, observe that

\[
\begin{align*}
 f^{-1}(\emptyset) &= \emptyset \\
 f^{-1}(\{1\}) &= U \\
 f^{-1}(\{2\}) &= V \\
 f^{-1}(\{1,2\}) &= X,
\end{align*}
\]

all of which are open.

(c) Use part (b) to show that if \(Y \) is a topological space and \(A, B \subset Y \) are non-empty, connected subspaces with a common point \(y \in A \cap B \), then \(A \cup B \) is connected.

(This was the key step in Homework 9 #1(a).)

Solution: Let \(Z = \{1,2\} \) with the discrete topology, and let \(f : A \cup B \to Z \) be continuous. We want to show that \(f \) is not surjective.

Suppose that \(f(y) = 1 \). Because \(A \) is connected, \(f|_A : A \to Z \) is not surjective; on the other hand, \(y \in A \), so \(f(y) = 1 \in f(A) \), so \(f(A) = \{1\} \). Similarly \(f(B) = \{1\} \). Thus \(f(A \cup B) = f(A) \cup f(B) = \{1\} \), so \(f \) is not surjective, as desired.

Similarly, if \(f(y) = 2 \) we find that \(f(A \cup B) = \{2\} \), so \(f \) is not surjective.

2. Let \(X \) and \(Y \) be topological spaces, and let \(p : X \times Y \to X \) be the projection \(p(x, y) = x \).

We have seen in lecture that \(p \) is continuous, and that \(p \) is an open map: that is, if \(W \subset X \times Y \) is open then \(p(W) \subset X \) is open.

(a) Give an example to show that \(p \) need not be a closed map: that is, if \(F \subset X \times Y \) is closed then \(p(F) \subset X \) need not be closed.

Hint: We’ve seen this in lecture; think about a hyperbola.

Solution: Let \(X = Y = \mathbb{R} \), and let

\[
F = \{(x, y) \in \mathbb{R}^2 : xy = 1\}.
\]

Then \(F \) is closed, but \(p(F) = (-\infty, 0) \cup (0, \infty) \) is not closed.
(b) Define what it means for \(Y \) to be compact.

Solution: Every open cover of \(Y \) admits a finite subcover: that is, if \(C \) is a collection of open sets in \(Y \) with \(\bigcup C = Y \), then there are finitely many \(U_1, \ldots, U_n \in C \) with \(Y = U_1 \cup \cdots \cup U_n \).

(c) Prove the following lemma that we proved in lecture: If \(Y \) is compact, \(W \subset X \times Y \) is open, and \(\{x\} \times Y \subset W \) for some point \(x \in X \), then there is an open set \(U \subset X \) with \(x \in U \) and \(U \times Y \subset W \).

Hint: Maybe start by drawing a picture to help you keep the notation straight.

Solution: For all \(y \in Y \) we have \((x, y) \in W\). Because \(W \) is open in the product topology, for each \(y \) we can choose open sets \(U_y \subset X \) and \(V_y \subset Y \) with \((x, y) \in U_y \times V_y \subset W\). The \(V_y \)'s form an open cover of \(Y \). Because \(Y \) is compact, we can extract a finite subcover \(V_{y_1}, \ldots, V_{y_n} \). Let \(U = U_{y_1} \cap \cdots \cap U_{y_n} \). Then

\[
U \times Y = \bigcup_{i=1}^{n} U_i \times V_i \subset \bigcup_{i=1}^{n} U_i \times V_i \subset W.
\]

(d) Show that if \(Y \) is compact then \(p \) is a closed map: that is, if \(F \subset X \times Y \) is closed then \(p(F) \subset X \) is closed.

Hint: Show that \(X \setminus p(F) \) is open by showing that if \(x \in X \setminus p(F) \) then there is an open \(U \subset X \) such that \(x \in U \subset X \setminus p(F) \). Apply part (c) with \(W = (X \times Y) \setminus F \).

Solution: Let us show that \(X \setminus p(F) \) is open, following the hint.

If \(x \in X \setminus p(F) \) then \(p^{-1}(\{x\}) \subset (X \times Y) \setminus F =: W \). We have \(p^{-1}(\{x\}) = \{x\} \times Y \), so by part (c) there is an open set \(U \subset X \) with \(x \in U \) and \(p^{-1}(U) = U \times Y \subset W \). Thus \(U \subset X \setminus p(F) \).

3. Let \(X \) and \(Y \) be topological spaces and let \(f : X \to Y \) be any map. We define the **graph** of \(f \),

\[
\Gamma = \{(x, y) \in X \times Y : y = f(x)\}.
\]

(a) Define what it means for \(Y \) to be Hausdorff. State (but do not prove) the characterization of Hausdorff in terms of the diagonal \(\Delta \subset Y \times Y \).
Solution: For every pair of points $p, q \in Y$ there are open sets $U, V \subset Y$ with $p \in U$, $q \in V$, and $U \cap V = \emptyset$. This is equivalent to saying that the diagonal

$$\Delta = \{(y_1, y_2) \in Y \times Y : y_1 = y_2\}$$

is closed.

(b) Show that if Y is Hausdorff and f is continuous then Γ is closed. Hint: Consider the continuous map $\varphi: X \times Y \to Y \times Y$ given by $(x, y) \mapsto (f(x), y)$, and the diagonal $\Delta \subset Y \times Y$.

Solution: The product topology is cooked up so that p and q are continuous, and so that $\varphi: X \times Y \to Y \times Y$ is continuous if and only if the two components $X \times Y \to Y$ are continuous. The first component of φ is $(x, y) \mapsto f(x)$, that is, $f \circ p$, which is continuous because f and p are continuous. The second component if $(x, y) \mapsto y$, which is continuous. Thus φ is continuous.

We have $\Gamma = \varphi^{-1}(\Delta)$: indeed, $(x, y) \in \Gamma$ if and only if $f(x) = y$, which is true if and only if $(f(x), y) \in \Delta$. Because Y is Hausdorff, Δ is closed. Because φ is continuous, $\varphi^{-1}(\Delta)$ is closed.

(c) Consider the projections

$$X \times Y \xrightarrow{p} Y \xrightarrow{q} Y$$

given by $p(x, y) = x$ and $q(x, y) = y$.

Show that for any subset $B \subset Y$ we have

$$f^{-1}(B) = p(\Gamma \cap q^{-1}(B)).$$

Solution: Let $x \in X$.

If $x \in f^{-1}(B)$ then $f(x) \in B$, so the point $(x, f(x))$ is in Γ and in $q^{-1}(B) = X \times B$, so $p(x, f(x)) = x$ is in $p(\Gamma \cap q^{-1}(B))$.

Conversely, if $x = p(x, y)$ for some $(x, y) \in \Gamma \cap q^{-1}(B)$, then because $(x, y) \in \Gamma$ we have $y = f(x)$, and because $(x, y) \in q^{-1}(B)$ we have $y = q(x, y) \in B$. Thus $f(x) \in B$, so $x \in f^{-1}(B)$.

4
(d) Show that if Y is compact and Γ is closed, then f is continuous.

Hint: Show that the preimage of a closed set $G \subset Y$ is closed. Apply 3(c) and 2(d).

Solution: Let $G \subset Y$ be closed. Because q is continuous, $q^{-1}(G)$ is closed, so $q^{-1}(G) \cap \Gamma$ is closed. Because Y is compact, p is a closed map by 2(d), so $f^{-1}(G) = p(\Gamma \cap q^{-1}(G))$ is closed.

(e) Give an example to show that if Y is Hausdorff but not compact and Γ is closed then f need not be continuous.

Hint: f should “blow up” somewhere.

Solution: Let $f : \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases}
\frac{1}{x} & \text{if } x \neq 0, \\
0 & \text{if } x = 0.
\end{cases}$$

We have seen that f is not continuous. But the graph of f is the union of a hyperbola and a point, hence is closed.

(f) Give an example to show that if Y is compact but not Hausdorff and f is continuous then Γ need not be closed.

Hint: The identity map is easiest.

Solution: Let Y be a two-point indiscrete space, which is compact but not Hausdorff. Let $X = Y$, and let f be the identity map $f(x) = x$. Then the graph of f is the diagonal $\Delta \subset Y \times Y$, which is not closed because Y is not Hausdorff.