Solutions to Homework 8

1. Let X be a topological space. Define a relation \sim on X by declaring that $p \sim q$ iff there is a path from p to q, that is, a continuous map $\gamma: [0, 1] \to X$ such that $\gamma(0) = p$ and $\gamma(1) = q$.

(a) Show that this is an equivalence relation: reflexive, symmetric, and transitive. Hint: The interesting one is transitive.

Solution: First we show that \sim is reflexive, that is, $x \sim x$ for all $x \in X$. The constant map $\gamma: [0, 1] \to X$ defined by $\gamma(t) = x$ is a path from x to x.\footnote{If you want to prove that γ is continuous, let $U \subset X$ be open. If $x \in U$ then $\gamma^{-1}(U) = [0, 1]$, which is open in $[0, 1]$. If $x \notin U$ then $\gamma^{-1}(U) = \emptyset$, which is also open.}

Next we show \sim is symmetric, that is, if $x \sim y$ then $y \sim x$. Let γ be a path from x to y. I claim that the map $\gamma': [0, 1] \to X$ defined by

$$
\gamma'(t) = \gamma(1-t)
$$

is a path from y to x. Clearly $\gamma'(0) = \gamma(1) = y$ and $\gamma'(1) = \gamma(0) = x$. To see that γ' is continuous, observe that the function $[0, 1] \to [0, 1]$ given by $t \mapsto 1 - t$ is continuous, and composing this with γ gives a continuous map γ'.

Last we show that \sim is transitive, that is, if $x \sim y$ and $y \sim z$ then $x \sim z$. Let α be a path from x to y, and β a path from y to z. I claim that the map $\gamma: [0, 1] \to X$ defined by

$$
\gamma(t) =
\begin{cases}
\alpha(2t) & \text{if } t \in [0, \frac{1}{2}], \\
\beta(2t - 1) & \text{if } t \in \left[\frac{1}{2}, 1\right]
\end{cases}
$$

is a path from x to z. Clearly $\gamma(0) = \alpha(0) = x$ and $\gamma(1) = \beta(1) = z$, and γ is well-defined because at $t = \frac{1}{2}$ we have $\alpha(1) = y = \beta(1)$.\footnote{If you want to prove that γ is continuous, let $U \subset X$ be open. If $x \in U$ then $\gamma^{-1}(U) = [0, 1]$, which is open in $[0, 1]$. If $x \notin U$ then $\gamma^{-1}(U) = \emptyset$, which is also open.}
\(\beta(0) \). To see that \(\gamma \) is continuous, we argue as follows. The map \([0, \frac{1}{2}] \to [0, 1] \) given by \(t \mapsto 2t \) is continuous, and composing this with \(\alpha \) gives a continuous map \([0, \frac{1}{2}] \to X \). Similarly, the map \([\frac{1}{2}, 1] \to [0, 1] \) given by \(t \mapsto 2t - 1 \) is continuous, and composing this with \(\beta \) gives a continuous map \([\frac{1}{2}, 1] \to X \). From this we deduce that \(\gamma \) is continuous by homework 6 #2.

(b) The equivalence classes of this equivalence relation are called are called path components. Describe (without proof) the path components of the following spaces:

i. \(\{(x, y) \in \mathbb{R}^2 : xy > 1 \} \).

 Solution: There are two path components: the half in the first quadrant, and the half in the third quadrant.

![Diagram showing two path components](image)

ii. \(\mathbb{Q} \).

 Solution: Each path component consists of a single point. The image of a path \(\gamma : [0, 1] \to \mathbb{Q} \subset \mathbb{R} \) is connected, hence is an interval in \(\mathbb{R} \), but any interval other than a single point contains an irrational number. Thus every path in \(\mathbb{Q} \) is constant.

iii. The topologist's sine curve.

 Solution: There are two path components: the set

 \[A = \{(x, y) \in \mathbb{R}^2 : x > 0 \text{ and } y = 1/x \}, \]

 and the line segment \(\{0\} \times [-1, 1] = \overline{A} \setminus A \).
2. Let X be a topological space. Define a relation \sim on X by declaring that $p \sim q$ iff there is a connected subspace $A \subset X$ containing p and q.

(a) Show that this is an equivalence relation: reflexive, symmetric, and transitive. Hint: The interesting one is transitive.

Solution:

Reflexive: Given $x \in X$, we take $A = \{x\}$, which is connected.

Symmetric: If $A \subset X$ is connected and contains both x and y, then it contains both y and x.

Transitive: If $A \subset X$ is connected and contains x and y, and if $B \subset X$ is connected and contains y and z, then $A \cup B$ contains x and z, and I claim that it is connected.

Let $2 = \{0, 1\}$ with the discrete topology, and recall that a space is connected if and only if every continuous map to 2 is constant. Let $f : A \cup B \to 2$. Because A and B are connected, the restrictions $f|_A$ and $f|_B$ are constant. Because $y \in A \cap B$, we see that $f|_A$ and $f|_B$ take the same value $f(y)$ throughout $A \cup B$.

(b) The equivalence classes of this equivalence relation are called are called connected components. Describe (without proof) the connected components of the following spaces:

i. $\{(x, y) \in \mathbb{R}^2 : xy > 1\}$.

Solution: Same as the path components: one in the first quadrant, and one in the third quadrant.

ii. \mathbb{Q}.

Solution: Same as the path components: single points.

iii. The topologist’s sine curve.

Solution: Because \bar{A} is connected, it has only one connected component.

(c) Let $p \in X$, let P be the path component of p, and let C be the connected component of p. Show that $P \subset C$.

Solution: Let $q \in P$, so there is a continuous $\gamma : [0, 1] \to X$ with $\gamma(0) = p$ and $\gamma(1) = q$. Now $[0, 1]$ is connected, and the continuous image of a connected set is connected, so $\gamma([0, 1])$ is a connected subset of X containing both p and q, so $q \in C$.

3
3. (a) Let \(X \) be a connected space, and let \(\sim \) be an equivalence relation on \(X \). Show that if the equivalence classes of \(\sim \) are open then every point in \(X \) is equivalent to every other point.

Solution: Fix some \(x \in X \), and let \(U \) be the equivalence class of \(x \), which is open by hypothesis. Let \(V \) be the union of all the other equivalence classes, which is a union of open sets, hence is open. Then we have \(X = U \cup V \) and \(U \cap V = \emptyset \). Because \(X \) is connected, it must be that \(U = X \) and \(V = \emptyset \).

(b) Show that a connected open subset \(U \subset \mathbb{R}^n \) is path-connected. Hint: Show that the path components of \(U \) are open.

Solution: Following the hint, let \(P \subset U \) be a path component; we want to show that \(P \) is open. Let \(p \in P \). Because \(U \) is open, we can choose an \(\epsilon > 0 \) such that \(B_\epsilon(p) \subset U \). I claim that \(B_\epsilon(p) \subset P \): for any \(q \in B_\epsilon(p) \), the straight line from \(p \) to \(q \) is a path that stays in \(B_\epsilon(p) \), hence in \(U \), so \(q \) is in the same path component as \(p \).

Because the path components of \(U \) are open, by part (a) we know that there is only one path component, that is, \(U \) is connected.

4. Optional: For the following topological spaces \(X \), describe the quotient topology on \(X/\sim \), where \(\sim \) is the equivalence relation from problem 1 (not problem 2):

(a) The topologist’s sine curve.

Solution: Sierpinsky space: There are two points, one open but not closed and the other closed but not open.

(b) \(\mathbb{Q} \)

Solution: It’s the same as the original space \(\mathbb{Q} \): since the path components are single points, the quotient map is a bijection, so it is a homeomorphism.

(c) \([\frac{1}{2}, 1] \cup [\frac{1}{3}, \frac{1}{2}] \cup [\frac{1}{5}, \frac{1}{3}] \cup \ldots \).

Solution: Each path component is open, so each point of the quotient is open, so the quotient is a countable discrete space.