1. Which of the following topologies on \mathbb{R} are compact? Give a proof either way.
 (a) The finite complement topology.
 (b) The topology where U is open iff either $U = \emptyset$ or $0 \in U$.
 (c) The lower semi-continuous topology.

2. (a) Let X be a compact space, and let $F_1 \supset F_2 \supset F_3 \supset \cdots$ be a descending chain of non-empty closed subsets. Show that the intersection $F_1 \cap F_2 \cap F_3 \cap \cdots$ is not empty.
 Hint: Otherwise $X \setminus F_1$, $X \setminus F_2$, \ldots is an open cover of X.
 (b) Give an example of a non-compact space X and a descending chain of closed subsets $F_1 \supset F_2 \supset F_3 \supset \cdots$ whose intersection is empty.

3. (a) Let X and Y be topological spaces, let $A \subset X$, and let U be a neighborhood of $A \times Y$ in $X \times Y$. Show that if Y is compact then there is a neighborhood V of A in X such that $V \times Y \subset U$.
 (Start by drawing a picture!)
 (b) Give a counterexample when Y is not compact.

4. A continuous map $f : X \to Y$ is called proper if the preimage of any compact set $K \subset Y$ is compact.
 (a) Show that the map $f : \mathbb{R}^2 \to \mathbb{R}$ given by $f(x, y) = x^2 + y^2$ is proper.
 (b) Show that the map $f : \mathbb{R}^2 \to \mathbb{R}$ given by $f(x, y) = x^2 - y^2$ is not proper.
(c) If \(f \) is proper then the preimage of every point is compact, because points are compact. But give an example of a continuous map \(f: X \to Y \) for which the preimage of every point is compact, but nonetheless \(f \) is not proper.

(d) Show that if \(X \) is compact and \(Y \) is Hausdorff then any continuous map \(f: X \to Y \) is proper.

(e) Let \(X \) and \(Y \) be topological spaces. Show that the projection \(p: X \times Y \to X \) is proper if and only if \(Y \) is compact.

5. Optional. We define one-point compactification of a topological space \(X \) to be \(\hat{X} = X \cup \{\infty\} \), with the following topology: if \(U \) is open in \(X \), then \(U \) is open in \(\hat{X} \); and if \(K \subset X \) is compact and closed, then \((X \setminus K) \cup \{\infty\}\) is open in \(\hat{X} \). Equivalently, \(F \subset \hat{X} \) is closed if \(F \cap X \) is closed, and either (1) \(\infty \in F \) or (2) \(F \) is compact.

(a) Show that the one-point compactification of \([0, 1)\) is homeomorphic to \([0, 1]\), and that the one-point compactification of \(\mathbb{R} \) or \((0, 1)\) is homeomorphic to the circle. Describe the one-point compactification of \(\mathbb{R}^2 \).

(b) Show that \(\hat{X} \) is compact.

(c) A space \(X \) is called locally compact if for every point \(p \in X \) there is a compact set \(K \subset X \) with \(p \in \text{int}(K) \). This is a slightly unusual use of the word “locally,” but it the appropriate one for compactness. For example, \(\mathbb{R} \) is locally compact, but \(\mathbb{Q} \) is not. Show that \(\hat{X} \) is Hausdorff if and only if \(X \) is locally compact and Hausdorff.

(d) A map \(f: X \to Y \) induces a map \(\hat{f}: \hat{X} \to \hat{Y} \). Show that \(\hat{f} \) is continuous if and only if \(f \) is proper.