1. Let X be a topological space. Define a relation \sim on X by declaring that $p \sim q$ iff there is a connected subspace $A \subset X$ containing p and q.

 (a) Show that this is an equivalence relation: reflexive, symmetric, and transitive. Hint: The interesting one is transitive.

 (b) The equivalence classes of this equivalence relation are called connected components. Describe (without proof) the connected components of the following spaces:

 i. $\{(x, y) \in \mathbb{R}^2 : xy > 1\}$.

 ii. \mathbb{Q}.

 iii. The topologist’s sine curve.

 (c) Let $p \in X$, let P be the path component of p, and let C be the connected component of p. Show that $P \subset C$.

2. (a) Let X be a connected space, and let \sim be an equivalence relation on X. Show that if the equivalence classes of \sim are open then every point in X is equivalent to every other point.

 (b) Show that a connected open subset $U \subset \mathbb{R}^n$ is path-connected. Hint: Show that the path components of U are open.

3. Which of the following topologies on \mathbb{R} are compact? Give a proof either way.

 (a) The finite complement topology.

 (b) The topology where U is open iff either $U = \emptyset$ or $0 \in U$.

 (c) The lower semi-continuous topology.
4. A continuous map \(f : X \to Y \) is called \textit{proper} if the preimage of any compact set \(K \subset Y \) is compact.

(a) Show that the map \(f : \mathbb{R}^2 \to \mathbb{R} \) given by \(f(x, y) = x^2 + y^2 \) is proper.

(b) Show that the map \(f : \mathbb{R}^2 \to \mathbb{R} \) given by \(f(x, y) = x^2 - y^2 \) is not proper.

(c) Show that if \(f \) is proper then the preimage of every point is compact.

(d) Give an example of a continuous map \(f : X \to Y \) for which the preimage of every point is compact, but nonetheless \(f \) is not proper.

(e) Show that if \(X \) is compact and \(Y \) is Hausdorff then any continuous map \(f : X \to Y \) is proper.

(f) Let \(X \) and \(Y \) be topological spaces. Show that the projection \(p : X \times Y \to X \) is proper if and only if \(Y \) is compact.

5. What is one question you have about last week’s lectures?