Let $X \subset \mathbb{R}^2$ be a connected, 1-dimensional manifold. You will prove that for almost every point $q \in \mathbb{R}^2$, the map $X \to \mathbb{R}$ given by $p \mapsto |p - q|^2$ is a Morse function. The same is true in higher dimensions, but the proof is harder.

You are given a surjective local diffeomorphism $\gamma: \mathbb{R} \to X$, which you can write in components as

$$\gamma(t) = (x(t), y(t)).$$

1. (5 points) Fix a point $(a, b) \in \mathbb{R}^2$, and let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(t) = (x(t) - a)^2 + (y(t) - b)^2,$$

which is the square of the distance from $\gamma(t)$ to (a, b).

Compute $f'(t)$.

Solution:

$$f'(t) = 2(x(t) - a)x'(t) + 2(y(t) - b)y'(t).$$
2. (10 points) Let $F: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by

$$F(t, u) = (x(t) + uy'(t), y(t) - ux'(t)).$$

Show that $f'(t) = 0$ if and only if there is a $u \in \mathbb{R}$ with $F(t, u) = (a, b)$. (Geometric remark: If t is fixed and u varies then $F(t, u)$ traces out the line that's perpendicular to the curve at $\gamma(t)$. So you are proving that $f'(t) = 0$ if and only if this line passes through (a, b).)

Solution: First suppose that $F(t, u) = (a, b)$. Then $a = x(t) + uy'(t)$ and $b = y'(t) - ux'(t)$, so

$$f'(t) = 2(x(t) - a)x'(t) + 2(y(t) - b)y'(t)$$
$$= 2(-uy'(t))x'(t) + 2(ux'(t))y'(t)$$
$$= 0.$$

There are several ways to do the converse, but here is one. Observe that

$$f'(t) = 2 \det \begin{pmatrix} x(t) - a & y(t) - b \\ -y'(t) & x'(t) \end{pmatrix},$$

so if $f'(t) = 0$ then this 2×2 matrix is singular. Because γ is a local diffeomorphism, $\gamma'(t) \neq 0$, so the second row is not zero, so the first row must be a multiple of the second row. Thus there is a $u \in \mathbb{R}$ such that $x(t) - a = -uy'(t)$ and $y(t) - b = ux'(t)$, so $(a, b) = F(t, u)$ as desired.
3. (5 points) Compute $f''(t)$.

Solution:

$$f''(t) = 2x'(t)^2 + 2(x(t) - a)x''(t) + 2y'(t)^2 + 2(y(t) - b)y''(t).$$

4. (5 points) Compute $dF_{(t,u)}$.

Solution:

$$dF_{(t,u)} = \begin{pmatrix} x'(t) + uy''(t) & y'(t) \\ y'(t) - ux''(t) & -x'(t) \end{pmatrix}$$

5. (10 points) Suppose that $f'(t) = 0$, so by problem 2 there is a $u \in \mathbb{R}$ with $F(t,u) = (a,b)$.

Show that (t,u) is a critical point of F if and only if $f''(t) = 0$.

Solution: In problem 2 we saw that $x(t) - a = -uy'(t)$ and $y(t) - b = ux'(t)$. Plugging this into our expression for $f''(t)$, we get

$$f''(t) = 2x'(t)^2 + 2(-uy'(t))x''(t) + 2y'(t)^2 + 2(ux')(y''(t)),$$

which is exactly $-2 \det dF_{(t,u)}$. Thus $f''(t) = 0$ if and only if $dF_{(t,u)}$ is singular.

6. (5 points) Define what it means for f to be a Morse function.

Hint: Because f is a function of one variable, you can simplify the definition a lot.

Solution: For every $t \in \mathbb{R}$ with $f'(t) = 0$ we have $f''(t) \neq 0$.

7. (5 points) State Sard’s theorem for the map F.

Solution: The set of critical values of F has measure zero in \mathbb{R}^2.

8. (5 points) Now let (a,b) vary, and consider the set of points $(a,b) \in \mathbb{R}^2$ for which the function f defined in problem 1 is not a Morse function.

Show that this set has measure zero.

Hint: Don’t work hard, just use what you’ve already done.

Solution: From problems 2 and 5 we see that f is not a Morse function if and only if (a,b) is a critical value of F. By Sard’s theorem, the set of all such (a,b) has measure zero in \mathbb{R}^2.

3