Final Exam Solutions

1. Let $\varphi: R \to S$ be a homomorphism, let $I \subset R$ be an ideal, and let $J = \varphi(I) = \{ j \in S : j = \varphi(i) \text{ for some } i \in I \}$.

 (a) Show that if φ is surjective then J is an ideal.

 Solution: Let $j_1, j_2 \in J$, and write $j_1 = \varphi(i_1)$ and $j_2 = \varphi(i_2)$ for some $i_1, i_2 \in I$. Then $i_1 + i_2 \in I$, so

 $$j_1 + j_2 = \varphi(i_1) + \varphi(i_2) = \varphi(i_1 + i_2) \in J.$$

 Next let $j \in J$ and $s \in S$, and write $j = \varphi(i)$ for some $i \in I$ and, because φ is surjective, write $s = \varphi(r)$ for some $r \in R$. Then $ri \in I$, so

 $$sj = \varphi(r)\varphi(i) = \varphi(ri) \in J.$$

 (b) Give an example to show that if φ is not surjective then J need not be an ideal.

 Solution: There are many possibilities of course. Here’s one: let $\varphi: \mathbb{Z} \to \mathbb{Q}$ be the inclusion, and let $I = (2)$. Then

 $$J = \{0, \pm 2, \pm 4, \pm 6, \ldots \} \subset \mathbb{Q}$$

 is not an ideal, because $\frac{1}{2} \in \mathbb{Q}$ and $2 \in J$ but $\frac{1}{2} \cdot 2 = 1 \notin J$.

2. Let $S \subset \mathbb{Q}$ be the set of numbers of the form $m/2^n$, where $m \in \mathbb{Z}$ and $n \in \{0, 1, 2, \ldots \}$.

 (a) Show that S is a subring of \mathbb{Q}.

 Solution: The set S is closed under addition:

 $$\frac{m_1}{2^{n_1}} + \frac{m_2}{2^{n_2}} = \frac{m_12^{n_2} + m_22^{n_1}}{2^{n_1+n_2}}.$$

It is closed under multiplication:
\[\frac{m_1}{2^n_1} \cdot \frac{m_2}{2^n_2} = \frac{m_1m_2}{2^{n_1+n_2}}. \]

It contains opposites:
\[-\frac{m}{2^n} = -\frac{m}{2^n}. \]

It contains 1:
\[1 = \frac{1}{2^0}. \]

Thus \(S \) is a subring.

(b) Show that \(S/5 \cong \mathbb{Z}/5 \).

Hint: Of course you want a homomorphism \(\varphi: S \to \mathbb{Z}/5 \) with \(\ker \varphi = (5) \); the main question is where to send \(\frac{1}{2} \). Observe that \(2 \cdot 3 = 1 \) in \(\mathbb{Z}/5 \).

Solution: Define a map \(\varphi: S \to \mathbb{Z}/5 \) by
\[\varphi \left(\frac{m}{2^n} \right) = m \cdot 3^n \pmod{5}. \]

First I claim that \(\varphi \) is well-defined. Suppose that \(m_1/2^{n_1} = m_2/2^{n_2} \). Without loss of generality we can assume that \(m_1 \leq m_2 \). Then \(m_2 = m_1 \cdot 2^k \) and \(n_2 = n_1 + k \) for some non-negative integer \(k \), so
\[m_2 \cdot 3^{n_2} = m_1 \cdot 2^k \cdot 3^{n_1+k} \equiv m_1 \cdot 3^{n_1} \pmod{5}, \]
where we have used the fact that \(2 \cdot 3 = 1 \pmod{5} \).

Next I claim that \(\varphi \) is a homomorphism. Clearly \(\varphi(1) = 1 \) and \(\varphi(ab) = \varphi(a)\varphi(b) \), so it remains to show that \(\varphi(a+b) = \varphi(a) + \varphi(b) \). For this we have
\[\varphi \left(\frac{m_12^{n_2} + m_22^{n_1}}{2^{n_1+n_2}} \right) = (m_12^{n_2} + m_22^{n_1})3^{n_1+n_2} \pmod{5} \]
\[= m_12^{n_2}3^{n_1+n_2} + m_22^{n_1}3^{n_1+n_2} \pmod{5} \]
\[= m_13^{n_2} + m_23^{n_2} \pmod{5} \]
\[= \varphi \left(\frac{m_1}{2^{n_1}} \right) + \varphi \left(\frac{m_2}{2^{n_2}} \right) \]
where in the third line we have used the fact that \(2 \cdot 3 \equiv 1 \pmod{5} \).
Clearly φ is surjective, and $\varphi(5) = 0$, so $5 \subseteq \ker \varphi$. For the reverse inclusion, suppose that $\varphi(m/2^n) = 0$. Then $m \cdot 3^n \equiv 0 \pmod{5}$, so 5 divides $m \cdot 3^n$. Since 5 is prime and does not divide 3^n, we see that $5 \mid m$. Writing $m = 5k$, we have $m/2^n = 5 \cdot k/2^n$, so $m/2^n \in (5)$.

Now by the first isomorphism theorem, φ induces an isomorphism $S/5 \cong \mathbb{Z}/5$.

(c) Let $f \in \mathbb{Z}[x]$. Show that if $f(\frac{1}{2}) = 0$ then $2x - 1 \mid f$.

Solution: We know that $(2x - 1) \mid f$ in $\mathbb{Q}[x]$. If you want to give the details, by polynomial long division we can write $f = (2x - 1)q + r$ for some $q, r \in \mathbb{Q}[x]$ with deg $r \leq 1$; that is, r is a constant. Plugging in $x = \frac{1}{2}$ we find that $r = 0$.

So we have $f = (2x - 1)q$ with $q \in \mathbb{Q}[x]$. By Gauss’s Lemma, there is an $a \in \mathbb{Q}$ such that $a(2x - 1) \in \mathbb{Z}[x]$ and $a^{-1}q \in \mathbb{Z}[x]$. But $a(2x - 1) = 2ax - a$, so $a \in \mathbb{Z}$, so $q = a \cdot a^{-1}q \in \mathbb{Z}[x]$.

Alternatively, for a non-zero polynomial

$$f = a_nx^n + \cdots + a_1x + a_0 \in \mathbb{Z}[x],$$

we can consider the reverse of f,

$$\text{rev } f = x^n f(1/x) = a_0x^n + a_1x^{n-1} + \cdots + a_n.$$

We verify that $\text{rev}(fg) = \text{rev } f \cdot \text{rev } g$: if deg $g = m$ then

$$\text{rev}(fg) = x^{m+n} f(1/x)g(1/x)$$

$$= x^m f(1/x) \cdot x^n g(1/x) = \text{rev } f \cdot \text{rev } g.$$

Thus $2x - 1$ divides f if and only if $\text{rev}(2x - 1) = -x + 2$ divides $\text{rev } f$, which is true if and only if $x - 2$ divides $\text{rev } f$. Also, $f(1/2) = 0$ if and only if $(\text{rev } f)(2) = 0$: we have

$$(\text{rev } f)(2) = 2^n f(1/2).$$

Now $x - 2$ is a monic, so we can use polynomial long division in $\mathbb{Z}[x]$ to say that $x - 2 \mid \text{rev } f$ if and only if $(\text{rev } f)(2) = 0$.

3
(d) Show that \(S \cong \mathbb{Z}[x]/(2x - 1) \).

Hint: Consider an appropriate homomorphism \(\varphi : \mathbb{Z}[x] \to \mathbb{Q} \).

Solution: Define \(\varphi : \mathbb{Z}[x] \to \mathbb{Q} \) by \(\varphi(f) = f(1/2) \).

First I claim that \(\text{im } \varphi = S \). Clearly \(\text{im } \varphi \subseteq S \), and for the reverse inclusion we have \(m/2^n = \varphi(mx^n) \).

Next I claim that \(\text{ker } \varphi = (2x - 1) \). Clearly \(2x - 1 \in \text{ker } \varphi \), so \((2x - 1) \subseteq \text{ker } \varphi \), and the reverse inclusion is part (c).

Now by the first isomorphism we have \(\mathbb{Z}[x]/\text{ker } \varphi \cong \text{im } \varphi \).

This suggests another approach to part (b):

\[
S/5 \cong \mathbb{Z}[x]/(2x - 1)/5 \\
\cong \mathbb{Z}[x]/(2x - 1, 5) \\
\cong \mathbb{Z}_5[x]/(2x - 1) \\
= \mathbb{Z}_5[x]/(x - 3) \\
\cong \mathbb{Z}_5.
\]

In the fourth line we have used the fact that \(3(2x - 1) = x - 3 \), and \(3 \) is a unit in \(\mathbb{Z}_5 \).

3. Recall that \(\mathbb{Q}[[x]] \) is the ring of formal power series

\[
f = a_0 + a_1 x + a_2 x^2 + \cdots
\]

where \(a_i \in \mathbb{Q} \), and infinitely many \(a_i \) may be non-zero. It does not make sense to talk about the degree of \(f \), but for \(f \neq 0 \) we define the order of \(f \) to be the smallest \(i \) such that \(a_i \neq 0 \). For example, \(\text{ord}(1 + x + x^2) = 0 \) and \(\text{ord}(x + x^2) = 1 \).

(a) Show that \(\text{ord}(fg) = \text{ord}(f) + \text{ord}(g) \).

Solution: Let \(n = \text{ord}(f) \) and \(m = \text{ord}(g) \), so we can write

\[
f = a_n x^n + a_{n+1} x^{n+1} + \cdots \\
g = b_m x^m + b_{m+1} x^{m+1} + \cdots
\]

with \(a_n \neq 0 \) and \(b_m \neq 0 \). Then \(a_n b_m \neq 0 \), and

\[
fg = a_n b_m x^{m+n} + (a_n b_{m+1} + a_{n+1} b_m) x^{m+n+1} + \cdots,
\]

so \(\text{ord}(fg) = m + n \).
(b) Let
\[f = a_0 + a_1 x + a_2 x^2 + \cdots \in \mathbb{Q}[x]. \]
Show that if \(f \) is a unit then \(a_0 \neq 0 \).

Solution: Suppose there is a \(g \in \mathbb{Q}[x] \) with \(fg = 1 \), and write
\[g = b_0 + b_1 x + b_2 x^2 + \cdots. \]
Then
\[fg = a_0 b_0 + (a_0 b_1 + a_1 b_0) x + (a_0 b_2 + a_1 b_1 + a_2 b_0) x^2 + \cdots, \]
so \(a_0 b_0 = 1 \), so \(a_0 \neq 0 \).

Another possibility: Suppose there is a \(g \in \mathbb{Q}[x] \) with \(fg = 1 \). Then \(\text{ord}(f) + \text{ord}(g) = \text{ord}(1) = 0 \), and \(\text{ord}(f) \) and \(\text{ord}(g) \) are non-negative integers, so \(\text{ord}(f) = 0 \), so \(a_0 \neq 0 \).

(c) Show that if \(a_0 = 1 \) then \(f \) is a unit.

Hint: Think about the geometric series:
\[
\frac{1}{1 + \text{stuff}} = 1 - \text{stuff} + \text{stuff}^2 - \text{stuff}^3 + \cdots.
\]

But make sure that your argument doesn’t accidentally prove that \(1 + (x - 1) \) is a unit.

Solution: Following the hint, we write \(f = 1 + h \) with \(\text{ord}(h) \geq 1 \), and let
\[g = 1 - h + h^2 - h^3 + h^4 - \cdots. \]

This is an infinite sum, but it is nonetheless well-defined: for each \(i \), only finitely many terms of the sum contribute to the coefficient of \(x^i \) in \(g \), namely
\[1 - h + h^2 - \cdots \pm h^i, \]
and the later terms all have order \(> i \) because \(\text{ord}(h) \geq 1 \).

(This is the thing that doesn’t work if \(h = x - 1 \). In that case the constant term of \(g \) would have to be \(1 + 1 + 1 + \cdots \), which is nonsense, the linear term would be \(0 - x - 2x - 3x - \cdots \), etc.)

Then we have
\[
fg = (1 + h)(1 - h + h^2 - \cdots) \\
= (1 - h + h^2 - \cdots) + (h - h^2 + h^3 - \cdots) = 1.
\]
(d) Show more generally that if \(a_0 \neq 0 \) then \(f \) is a unit.

Hint: Factor \(a_0 \) out of \(f \), and note that the product of two units is a unit.

Solution: Write

\[
f = a_0 \cdot \left(1 + \frac{a_1}{a_0} x + \frac{a_2}{a_0} x^2 + \cdots \right).
\]

Then \(a_0 \) is a unit, and the thing in parentheses is a unit by part (c), so \(f \) is a unit.

(e) Let \(f \in \mathbb{Q}[x] \) be non-zero, and let \(n = \text{ord}(f) \). Show that the ideal \((f) = (x^n)\).

Hint: Factor \(x^n \) out of \(f \); then what’s left is a unit.

Solution: Since \(\text{ord} f = n \), we have

\[
f = a_n x^n + a_{n+1} x^{n+1} + a_{n+2} x^{n+2} + \cdots
\]

with \(a_n \neq 0 \). Then we can write

\[
f = x^n \cdot (a_n + a_{n+1} x + a_{n+2} x^2 + \cdots),
\]

and the thing in parentheses is a unit by part (d), so we can write

\[
x^n = f \cdot (a_n + a_{n+1} x + a_{n+2} x^2 + \cdots)^{-1}.
\]

Thus \(f \in (x^n) \) and \(x^n \in (f) \), so \((f) = (x^n)\).

(f) Show that every non-zero ideal \(I \subset \mathbb{Q}[x] \) is of the form \((x^n)\) for some \(n \).

Hint: Choose an \(f \in I \) of minimal order. Do not assume that \(I \) is finitely generated.

Remarks: Thus we have proved that \(\mathbb{Q}[x] \) is a principal ideal domain, and that it has only one maximal ideal. A ring with a unique maximal ideal is called a local ring. A local PID is called a discrete valuation ring; in this example the valuation is what we’ve been calling the order of \(f \).

Solution: Choose a non-zero \(f \in I \) such that \(\text{ord} f \leq \text{ord} g \) for all non-zero \(g \in I \). Let \(n = \text{ord} f \). In part (d) we saw that there is a unit \(u \in \mathbb{Q}[x] \) such that \(f = x^n u \), so \(x^n = fu^{-1} \). Thus \(x^n \in I \), so \((x^n) \subset I \). For the reverse inclusion, let \(g \in I \). If \(g = 0 \) then of course \(g \in (x^n) \). If \(g \neq 0 \) then \(\text{ord} g \geq n \), so \(x^n \) divides \(g \), so again \(g \in (x^n) \).
(g) Which of the ideals \((0), (x), (x^2), (x^3), \ldots\) are prime ideals?

Solution: The ideal \((0)\) is prime because \(\mathbb{Q}[x]\) is an integral domain.

The ideal \((x)\) is prime because the quotient is \(\mathbb{Q}\), which is an integral domain. Put another way, if \(x \mid fg\) then \(\text{ord}(fg) \geq 1\), so \(\text{ord } f \geq 1\) or \(\text{ord } g \geq 1\), so \(x \mid f\) or \(x \mid g\).

For \(n \geq 2\), the ideal \((x^n)\) is not prime: we have \(x \cdot x^{n-1} = x^n\), but neither \(x\) nor \(x^{n-1}\) is in \((x^n)\).

You might also mention that \((1)\) is not prime by definition.