Solutions to Homework 9

1. Show that \(\mathbb{Z}_2[x]/(x^3 + x + 1) \cong \mathbb{Z}_2[y]/(y^3 + y^2 + 1) \).

Solution: Consider the map \(\varphi: \mathbb{Z}_2[x] \rightarrow \mathbb{Z}_2[y]/(y^3 + y^2 + 1) \) given by \(x \mapsto y+1 \), that is, \(\varphi(f) = f(y+1) \). Then \(\varphi(x^3 + x + 1) = y^3 + y^2 + 1 = 0 \), so \((x^3 + x + 1) \subseteq \text{ker} \varphi \). But \(x^3 + x + 1 \) is irreducible, and \(\mathbb{Z}_2[x] \) is a principal ideal domain, so irreducible implies prime, and every non-zero prime ideal is maximal; hence either \(\text{ker} \varphi = (x^3 + x + 1) \) or \(\text{ker} \varphi = (1) \). Since \(\varphi(1) \neq 0 \), we must have \(\text{ker} \varphi = (x^3 + x + 1) \). Thus we get an isomorphism

\[

\mathbb{Z}_2[x]/(x^3 + x + 1) \cong \text{im} \varphi \subseteq \mathbb{Z}_2[y]/(y^3 + y^2 + 1).

\]

Since both sides have 8 elements, the inclusion must be an equality.

2. List all the irreducible polynomials of degree 4 in \(\mathbb{Z}_2[x] \).

Solution: A polynomial of degree 4 is either irreducible, or it factors as a linear times a cubic, or it factors as a product of two irreducible quadratics. First we list the sixteen polynomials of degree 4. We cross off the ones with no constant term, since they are multiples of \(x \). We cross off the ones with an even number of terms, since they have \(f(1) = 0 \), hence are multiples of \((x + 1) \). This leaves us with four:

\[

x^4 + x + 1 \quad x^4 + x^2 + 1

x^4 + x^3 + 1 \quad x^4 + x^3 + x^2 + x + 1.

\]

In lecture we saw that the only irreducible quadratic is \(x^2 + x + 1 \), so we cross out \((x^2 + x + 1)^2 = x^4 + x^2 + 1 \), leaving three irreducibles:

\[

x^4 + x + 1 \quad x^4 + x^3 + 1 \quad x^4 + x^3 + x^2 + x + 1.

\]
3. Show that \(f = x^4 + 3x^3 + 5x^2 + 7x + 9 \) is irreducible in \(\mathbb{Q}[x] \).

Solution: Suppose on the contrary that there are non-constant polynomials \(g, h \in \mathbb{Q}[x] \) with \(f = gh \). By Gauss's lemma there is an \(a \in \mathbb{Q} \) such that \(ag \in \mathbb{Z}[x] \) and \(a^{-1}h \in \mathbb{Z}[x] \). Let \(G = ag \) and \(H = a^{-1}h \), so \(f = GH \). Reduce mod 2, so we get \(\bar{f} = \bar{G}\bar{H} \in \mathbb{Z}_2[x] \). Since the leading coefficient of \(f \) is 1, the leading coefficients of \(G \) and \(H \) must be \(\pm 1 \), so \(\bar{G} \) and \(\bar{H} \) are again non-constant, so \(\bar{f} \) is reducible in \(\mathbb{Z}_2[x] \). But \(\bar{f} = x^4 + x^3 + x^2 + x + 1 \), and in the previous problem we saw that this is irreducible.

4. Let \(f \in \mathbb{Z}[x] \), and suppose that \(f\left(\frac{1}{2}\right) = 0 \). Show that \(2x - 1 \mid f \).

Solution: See exam solutions.

5. We have seen that \(R = \mathbb{Z}[\sqrt{-5}] \) is not a unique factorization domain, much less a principal ideal domain. Show nonetheless that every non-zero prime ideal in \(R \) is maximal.

Solution: If \(I \) is prime then \(R/I \) is an integral domain. Below I will argue that \(R/I \) is finite. By homework 2, problem 3c, every finite integral domain is a field. Thus \(I \) is maximal.

Proposition: For any non-zero ideal \(I \subset R \), the quotient \(R/I \) is finite.

First I claim that \(I \cap \mathbb{Z} \neq (0) \). Indeed, choose a non-zero \(a + b\sqrt{-5} \); then
\[
N := (a + b\sqrt{-5})(a - b\sqrt{-5}) = a^2 + 5b^2 \in I \cap \mathbb{Z}.
\]

Next I claim that \(R/(N) \) is finite, with exactly \(N^2 \) elements. Indeed, we see that \(a + b\sqrt{-5} \equiv c + d\sqrt{-5} \) (mod \(N \)) in \(R \) if and only if \(a \equiv c \) and \(b \equiv d \) (mod \(N \)) in \(\mathbb{Z} \). Thus every element of \(R \) is equivalent to exactly one element of the form \(a + b\sqrt{-5} \) with \(0 \leq a, b < N \), and there are \(N^2 \) of these.

Last I claim that \(R/I \) is finite. Consider the map \(\varphi: R/(N) \to R/I \) defined by \(\varphi(r + (N)) = r + I \). This is well-defined because \((N) \subset I \), so if \(r + (N) = s + (N) \) then \(r - s \in (N) \subset I \), so \(r + I = s + I \). And \(\varphi \) is clearly surjective. Because \(R/(N) \) is finite and it surjects onto \(R/I \), we see that \(R/I \) is finite.

(In fact \(\varphi \) is a homomorphism, but we don’t need this. Note that \(R/I \) is not a subset of \(R/(N) \) in any natural way.)
6. We define the field of formal Laurent series \(\mathbb{Q}((x)) \), which is like the ring of formal power series \(\mathbb{Q}[[x]] \) but we allow finitely many negative exponents:

\[
\mathbb{Q}((x)) = \{ a_{-n}x^{-n} + \cdots + a_{-1}x^{-1} + a_0 + a_1x + a_2x^2 + a_3x^3 + \cdots \}.
\]

Let’s take for granted that \(\mathbb{Q}((x)) \) is a ring. Show that every non-zero element has an inverse, so \(\mathbb{Q}((x)) \) is a field. Show that the field of fractions of \(\mathbb{Q}[[x]] \) is isomorphic to \(\mathbb{Q}((x)) \).

Solution: First we should argue that an element

\[
a_0 + a_1x + a_2x^2 + \cdots \in \mathbb{Q}[[x]]
\]

is a unit if \(a_0 \neq 0 \). For details of this see the exam solutions. Note that this was also homework 2, problem 4c.

Now for an arbitrary non-zero \(f \in \mathbb{Q}((x)) \), write

\[
f = a_nx^n + a_{n+1}x^{n+1} + a_{n+2}x^{n+2} + \cdots
\]

with \(a_n \neq 0 \) and \(n \) possibly negative. Factor this as

\[
f = x^n \cdot (a_n + a_{n+1}x + a_{n+2}x^2 + \cdots).
\]

The second factor is invertible in \(\mathbb{Q}[[x]] \); write

\[(a_n + a_{n+1}x + a_{n+2}x^2 + \cdots)^{-1} = b_0 + b_1x + b_2x^2 + \cdots\]

for suitable \(b_i \in \mathbb{Q} \). Then

\[
f^{-1} = x^{-n} \cdot (b_0 + b_1x + b_2x^2 + \cdots) = b_0x^{-n} + b_1x^{-n+1} + b_2x^{-n+2} + \cdots.
\]

Thus \(\mathbb{Q}((x)) \) is a field.

It remains to produce an isomorphism \(\varphi: F \to \mathbb{Q}((x)) \), where \(F \) is the field of fractions of \(\mathbb{Q}[[x]] \). Given an arbitrary \(a \in F \), write \(a = f/g \) with \(f, g \in \mathbb{Q}[[x]] \) with \(g \neq 0 \). Then \(g \) is invertible in \(\mathbb{Q}((x)) \) as we just saw, so let \(\varphi(a) = fg^{-1} \in \mathbb{Q}((x)) \). It is straightforward to check that \(\varphi \) is a well-defined homomorphism. Since \(F \) is a field, its only ideals are \((0)\) and \((1)\); since \(\varphi(1) \neq 0 \), we must have \(\ker \varphi = (0) \), so \(\varphi \) is injective. To see that \(\varphi \) is surjective, let

\[
h = a_nx^n + \cdots \in \mathbb{Q}((x))
\]

be given. If \(n \geq 0 \) then \(h \in \mathbb{Q}[[x]] \), and \(\varphi\left(\frac{1}{x^n}\right) = h \). If \(n < 0 \) then \(h^{-1} \in \mathbb{Q}[[x]] \), and \(\varphi\left(\frac{1}{x^n}\right) = h \).