Homework 3
Due Wednesday, February 1, 2017

1. Let G be a group. Show that G is Abelian if and only if the map $\varphi : G \to G$ given by $\varphi(g) = g^2$ is a homomorphism.

2. Let G be a group, let X be a set, and let S_X denote the group of bijections $X \to X$ under composition.
 (a) Suppose that G acts on X. For $g \in G$, let $l_g : X \to X$ be the map $l_g(x) = g \cdot x$. Show that $l_g \in S_X$, and that the map $G \to S_X$ given by $g \mapsto l_g$ is a homomorphism.
 (b) Conversely, suppose that that $\varphi : G \to S_X$ is a homomorphism. Show that $g \cdot x = \varphi(g)(x)$ defines an action of G on X.

3. Let σ be the following elements of S_6:
 \[\begin{array}{cccccc}
 1 & 2 & 3 & 4 & 5 & 6 \\
 1 & 2 & 3 & 4 & 5 & 6 \\
 \end{array}\]
 Write σ, σ^2, and σ^{-1} in cycle notation.

4. In S_6, let $\sigma = (1 \ 6 \ 2)(3 \ 4)$, $\tau = (3 \ 4 \ 5 \ 6)$.
 Compute $\sigma \cdot \tau$, $\tau \cdot \sigma$, σ^2, and τ^2.

5. Let $\sigma = (1 \ 2 \ 3 \ 4 \ 5 \ 6) \in S_6$. For which integers n is σ^n a 6-cycle?

6. Let G be the symmetry group of the regular tetrahedron. In lecture we saw that the action of G on the four vertices induces an isomorphism $G \to S_4$. Draw pictures of the symmetries corresponding to the following elements of S_4:
 \((12) \quad (123) \quad (132) \quad (12)(34) \quad (1234) \)
7. Let the symmetric group S_3 act on the vector space \mathbb{R}^3 by permuting the three coordinates.

(a) Describe the orbit and stabilizer of the point $(4, 5, 6) \in \mathbb{R}^3$.

(b) Describe the orbit and stabilizer of the point $(4, 5, 5) \in \mathbb{R}^3$.

(c) Optional: Show that (x, y, z) and (x', y', z') lie in the same orbit if and only if

\[
\begin{align*}
 x + y + z &= x' + y' + z', \\
 xy + xz + yz &= x'y' + x'z' + y'z', \\
 xyz &= x'y'z'.
\end{align*}
\]