Last time: \(R = k(x_1, \ldots, x_n) \)

\(M = \mathbb{R}^n \) with basis \(\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n} \)

Euler 0.f. \(\xi \in M \\nM^* = \mathbb{R}^n \) with basis \(dx_1, \ldots, dx_n \)

\[\begin{align*}
\text{Closed complex} \\
0 \rightarrow \Lambda^0 M^* \rightarrow \cdots \\
\Lambda^2 M^* \rightarrow M^* \rightarrow \mathbb{R} \rightarrow 0 \\
\uparrow \\
\text{homology here is } R(x_1, \ldots, x_n)
\end{align*} \]

\(\text{but exact elsewhere.} \)

\(\text{if } \omega = f \, dx_1 \wedge \cdots \wedge dx_n \in \Lambda^k M^* \)

where \(f \) is homog. of deg \(c_i \)

\(\text{then } d(\mathcal{L}f \omega) + \mathcal{L}f \omega = (k+c) \omega \)

[Cartan's magic fork: it's \(\mathcal{L}f \omega \)]

\(\mathcal{L}f = \frac{\partial}{\partial t} \frac{\partial f}{\partial x} \)

\(\mathcal{L} \frac{\partial}{\partial x} = dx_i \)

\(\mathcal{L} \frac{\partial}{\partial x} \text{ obeys a Leibniz rule.} \)}
Let \(\Lambda^k \mathcal{M}^+ \) be general, \(k > 1 \).

Write \(\omega \) as a sum of Young pieces:

\[
\omega = \omega_0 + \omega_1 + \ldots + \omega_k
\]

if \(\sum \omega_i = 0 \) then each \(\sum \omega_i = 0 \)

so \(\sum \omega_i = (k+1) \omega_k \)

so \(\sum \left(\frac{1}{k} \omega_0 + \frac{1}{k+1} \omega_1 + \ldots + \frac{1}{k+2} \omega_k \right) = \omega \).

so the complex is exact where claimed.

(this proof requires that \(k = 0 \), but the conclusion is true more generally.)

if \(R = \{(x, \ldots, x_n) \} \) and \(m = (x_1, \ldots, x_n) \)

then \(\omega^R (R/m, R/m) = 1, 1, \ldots, 1, 0 \) —

resolve by Koszul cx.

\(R/m \) is all differentials \(= 0 \)

proj. dim \(R/m = n \).
If \(m = (x_1-a_1, \ldots, x_n-a_n) \)

then it's similar: proj dim \(R/m = n \).

If \(k = k \) that proves that

\[\text{glob dim } R = n. \]

An answer to question:

\[R = k[x_1, x_2, x_3, x_4], I = (x_2-y^2, x_3-yz, yw-z^2) \]

Koszul ex of \(k[x_1] \) is not exact.

\[\text{if } k \neq k, \text{ still glob dim } k[x_1, \ldots, x_n] = n \]

know glob dim = n

because of \(\text{Tor} \) \(R/(x_1, \ldots, x_n), \text{self} \).

Let's prove \(\leq \).

\[R = k[x_1, \ldots, x_n], S = k[x_1, \ldots, x_n] \cong R \otimes k \]

Claim: \(S \) is flat over \(R \)

Better: a seq of \(R \)-modules

\[0 \to L \to M \to N \to 0 \]

is exact

iff

\[0 \to R \otimes M \to R \otimes N \to 0 \]

is exact

"faithfully flat"
Pf $\xrightarrow{0 \to L \to M \to N}$ is exact as R-mod
iff it's exact as k-vector spaces.
iff $0 \to \mathbb{E}_R \xrightarrow{M \otimes \mathbb{E}_k} N \otimes \mathbb{E}_k \to 0$

is exact as \mathbb{E}_k-vector spaces.
(think about it)

iff $0 \to \mathbb{L} \otimes S \xrightarrow{\mathbb{M} \otimes S} \mathbb{N} \otimes S \to 0$

is exact as S-modules.

Proof if $R \otimes S$ is faithfully flat
then an R-module A is flat iff
$\Rightarrow A \otimes S$ is flat/\S.

PF is easy. For \exists

let $0 \to L \to M \to N \to 0$ be

an exact seq. of R-mods.

is $0 \to \mathbb{L} \otimes \mathbb{A} \to \mathbb{M} \otimes \mathbb{A} \to \mathbb{N} \otimes \mathbb{A} \to 0$ exact?

Yes iff same $\mathbb{L} \otimes \mathbb{S}$ is exact, but

$\mathbb{L} \otimes \mathbb{S} = \mathbb{L} \otimes (\mathbb{A} \otimes \mathbb{S})$ and both those

operations are exact by hypothesis. \exists
Prop: Let M be a fin gen module over $R = k[x_1, \ldots, x_n]/J$. Then \(\text{proj dim } M \leq n \).

Proof: Take any fin gen proj res.

\[\cdots \to P \to P_0 \to M \to 0 \]

Cut it off: let $K = \ker d_{n-1} = 0 \to K \to P \to \cdots \to P_1 \to P_0 \to M \to 0$.

Claim: K is proj.

Know $K \otimes_R S$ is proj, because

$$\text{Tor}_i^S(K \otimes_R S, S/J_m) = \text{Tor}_i^S(M \otimes_R S, S/J_m) = 0$$

so $K \otimes_R S$ is flat.

so K is flat.

so K is proj. (bec. fin gen).

\qed