Promised last time:
\(t = k\)-manifold

\(T: U \to \mathbb{R} \) open disc bundle
in some vector bundle

\(\eta \) a closed \(k \)-form on \(U \)

w) let \(\alpha = \eta \) (zero section): closed \(k \)-form on \(T \)

then \(\eta = \pi^* \alpha \) is exact.

reason: id: \(U \to U \) and \(U \to T \to U \)
are homotopic via straight-line hg.

Last week:
on \(\mathbb{C} P^r \), the tautological (i.e. \(O(-1) \)
and its dual \(O(1) \). Linear forms on \(\mathbb{C}^{r+1} \)
give sections of \(O(1) \)

let \(h = c_1(O(1)) \)

computed \(\int_{\mathbb{C} P^r} h^r = 1 \), so it deserves to be called \(h \).

observe: \(c_r(O(1)^\otimes r) = h^r \), because

\[
c_r(O(1)^\otimes r) = (c(O(1)))^r = (1 + h)^r
= 1 + rh + \binom{r}{2} h^2 + \cdots + h^r
\]

and this works on the level of forms.
Let X be a n-manifold, E a \mathbb{C}^x v.b. of rank r, S a transverse section cutting out $T < X$ of codim. $2r$ produced $\pi : X' \to T$ a \mathbb{CP}^{r-1}-bundle containing a copy of T.

E' a v.b. on X'
st. $E'|_{T} = E|_{T}$

and $E'|_{\text{fiber \ } T} = O_{\mathbb{CP}^{r-1}}(1)$

(and a section s' of E' that cut out T transversely...)

Then for $\alpha \in H_{ap}^{*}(T)$, have

$$\int_{X'} c_{r}(E') \wedge \pi^{*}\alpha = \int_{T} \pi^{*}(c_{r}(E)) \wedge \alpha$$

Real case:

now E real oriented v.b. of rank $2r$ choose a Riem. metric.

so for any compact \mathcal{V} on E, curvature \mathcal{S} acts vol. in skew-symmetric matrices $\mathcal{S} \in \mathbb{M}(\Lambda^{2}T^{*}X \otimes \mathfrak{so}(E))$

put $\mathcal{K}(\mathcal{V}) = \text{PF}(\mathcal{S}), \quad \text{PF}(\mathcal{A}) = (\det \mathcal{A})$
Claim is that for a transverse section \(s \in \mathcal{P}(E) \), and \(\eta \) a closed \((n-2r)\)-form on \(X \),

\[
\int_X \alpha \wedge \eta = \int_{\tau \simeq 0} \eta
\]

Idea: replace \(X \) with a \(S^{2r} \)-bundle

\[X' \to T \]

How? take the unit disc bundle \(D \subset E \)

collapse the boundary of each disc to get a \(S^{2r} \)-bundle, \(X' \)

(If I collapsed \(2D \) to a point, that's the Thom space of \(E|_I \).
Think of it as a twisted suspension.)

Want: \(E' \) on \(X' \) s.t. \(E'|_I = E|_I \) and \(E'|_I \) has \(X = I \)

\(\Rightarrow \) too much to ask.

Instead: \(E' = T_{\pi} = T_{X'/I} \) try. bundle to fibers of \(\pi \)
get a section of E' that vanishes (transversely) at north and south pole

then $\chi(TS^{2n}) = 2$ (long computation like we did with \mathbb{CP}^n)

and s' cuts out two copies of \mathbb{C} in \overline{X}'

$E'/\text{either} \mathbb{C} = E'/\mathbb{C}$

Nail it down more next time...