Induced Maps + Homology Invariance

Last time:

- \(C^n_\partial(x) = \text{formal linear combo of maps } \sigma : \mathbb{S}^n \to X \)

- Differentials \(\partial : C^{n+1}(X) \to C^n_\partial(X) \)
 - \(\partial \circ \partial = 0 \)
 - \(\text{Im } \partial_{n+1} \subset \ker \partial_n \)
 - \(\text{boundaries } \subset \text{cycles} \)

- \(H^n(X) = \ker \partial_n / \text{Im } \partial_{n+1} \) tends to be fin. gen.

- Elements of \(H^n \) are represented by \(n \)-cycles

- Two cycles represent the same class in \(H^n \) if they differ by a boundary. ("homologous")

- \([c] = [d] \)
- \([c] = [b] + [c] \)
First calculation:

Prop. If \(X \) is path-connected, then \(H_0(X) = \mathbb{Z} \)

Proof: View a point \(x_0 \in X \) as a 0-chain

Then \(\partial x_0 = 0 \) so \([x_0] \in H_0(X) \)

If \(x_1 \in X \) is another point,
choose a path \(y \) from \(x_0 \) to \(x_1 \)
View \(y \) as a 1-chain
Then \(\partial y = x_1 - x_0 \)

so \([x_1] = [x_0] \) in \(H_0 \).

a gen. elt. of \(H_0 \) is \(a_0 [x_0] + a_1 [x_1] + \cdots + a_k [x_k] \)

But \(\partial (\sum a_i [x_i]) = \sum (\sum a_i) \partial [x_i] = \sum a_i \partial [x_i] \)

so \(H_0(X) = \mathbb{Z} \).

Prop. \(H_n(\text{point}) = \begin{cases} \mathbb{Z} & \text{if } n = 0 \\ 0 & \text{otherwise} \end{cases} \)

Proof. \(\sum \) only one map \(\sigma : \Delta^n \to \text{point} \)

\[\sum \sigma_i = \sum (-1)^i \sigma_i \circ \varphi_i \]

\[\sum \sigma_i = \begin{cases} \sigma_i & \text{if } \sigma_i \text{ even} \\ 0 & \text{if } \sigma_i \text{ odd} \end{cases} \]
So \(\cdots \to C_3 \to C_2 \to C_1 \to C_0 \to 0 \) is

\[
\begin{align*}
\tilde{H}_0 &= \mathbb{R} / 0 = \mathbb{R} \\
\tilde{H}_1 &= \mathbb{R} / \mathbb{R} = 0 \\
\tilde{H}_2 &= 0 / 0 = 0 \\
\tilde{H}_3 &= \mathbb{R} / \mathbb{R} = 0 \\
e &tc. \quad \square
\end{align*}
\]

Suppose \(f : X \to Y \).

Define \(f_* : C_n(X) \to C_n(Y) \) and extend \(\sigma \mapsto f_\# \sigma \) linearly.

Lemma \(\exists \tilde{f}_* \sigma = f_* \tilde{\sigma} \) for all \(\sigma : \Delta^n \to X \) hence for all chains.

Proof \(\tilde{f}_* \sigma = \tilde{f} (f_\# \sigma) = \sum_{i=0}^n (-1)^i \tilde{f}_* (f_\# \sigma \circ \varphi_i) = \tilde{f} \left(\sum_{i=0}^n (-1)^i \tilde{f}_* (f_\# \sigma \circ \varphi_i) \right) \) \(\square \)
As a diagram

\[\cdots \rightarrow C_{n+1}(X) \xrightarrow{\partial} C_n(X) \xrightarrow{\partial} C_{n-1}(X) \rightarrow \cdots \]

\[\xrightarrow{f_*} \quad \xrightarrow{f_*} \quad \xrightarrow{f_*} \]

\[\cdots \rightarrow C_{n+1}(Y) \xrightarrow{\partial} C_n(Y) \xrightarrow{\partial} C_{n-1}(Y) \rightarrow \cdots \]

Thus, \(f_*(\mathbb{Z}_n(X)) \subset \mathbb{Z}_n(Y) \)

if \(\partial c = 0 \) then \(\partial(f_*(c)) = f_*(\partial c) = 0 \)

and \(f_*(\mathbb{Z}_n(X)) \subset \mathbb{Z}_n(Y) \)

so we get a well-defined map

\[f_*: H_n(X) \rightarrow H_n(Y) \]

Easy to check: \((g \circ f)_* = g_* \circ f_* \)

\[1_* = 1 \]

Thus homeomorphic spaces have isomorphic \(H_n \)s.

Want: homotopy invariance.
Prop: if \(f \approx g : X \to Y \) then \(f_{\#} = g_{\#} : \text{H}_n(X) \to \text{H}_n(Y) \)

Pf. Let \(F: X \times I \to Y \) be a homotopy from \(f \) to \(g \).

Define \(P : C_n(X) \to C_{n+1}(Y) \) as follows:

Given \(\sigma : \Delta^n \to X \), consider

\[
\Delta^{n+1} \to \Delta^n \times I \xrightarrow{\sigma \times 1} X \times I \xrightarrow{F} Y
\]

Define \(P(\sigma) = \sum (-1)^i F \circ (\sigma \times 1) \circ p_i \) and extend linearly.

I claim that \(2P + D_2 = g_{\#} - f_{\#} \) for \(\sigma : \Delta^n \to X \).
\[\mathcal{P}_0 \text{ is sides, top, bottom} \]

\[\mathcal{P}_1 \text{ is just the sides} \]

\[g_0 \sigma \text{ is just the top} \]

\[f_\ast \sigma \text{ is bottom, opp. orientation} \]

Worksheet: Conclude that \(f_\ast = g_0 \).