We define projective space \mathbb{RP}^n as the set of 1-dimensional subspaces of \mathbb{R}^{n+1} – or lines through the origin, if you like that description better – with the quotient topology from the surjection

$$\mathbb{R}^{n+1} \setminus 0 \to \mathbb{RP}^n$$

$$v \mapsto \text{the subspace } \mathbb{R}v \subset \mathbb{R}^{n+1}.$$

The point of this worksheet is to get a feeling for \mathbb{RP}^n. Convince yourselves that the following claims are correct.

1. The quotient topology from the surjection

$$S^n \to \mathbb{RP}^n$$

$$v \mapsto \text{the subspace } \mathbb{R}v \subset \mathbb{R}^{n+1}$$

is the same. Thus \mathbb{RP}^n is compact. We can describe \mathbb{RP}^n as S^n with antipodal points identified, or (to put it another way) as S^n/\mathbb{Z}_2, where the non-trivial element of \mathbb{Z}_2 acts freely on S^n by the antipodal map $v \mapsto -v$.

2. Draw a picture of the quotient map $S^0 \to \mathbb{RP}^0$.

3. In \mathbb{R}^2, draw the upper half of the unit circle and some lines through the origin. Convince yourself that $\mathbb{RP}^1 \cong S^1$, and the quotient map $S^1 \to \mathbb{RP}^1$ corresponds to the map $S^1 \to S^1$ given by $z \mapsto z^2$.

4. In \mathbb{R}^3, draw with the upper half of the unit sphere and some lines through the origin. Convince yourself that \mathbb{RP}^2 can be obtained from the disc D^2 by gluing together opposite points on the boundary circle.

5. More generally, \mathbb{RP}^n can be obtained from the disc D^n by gluing together opposite points on the boundary S^{n-1}, or to put it another way, by taking \mathbb{RP}^{n-1} and attaching a disc D^n via the quotient map $S^{n-1} \to \mathbb{RP}^{n-1}$. Thus for $n \geq 3$ we have $\pi_1(\mathbb{RP}^n) = \pi_1(\mathbb{RP}^{n-1})$, which by induction is $\pi_1(\mathbb{RP}^2) = \mathbb{Z}_2$.

6. So living in \mathbb{RP}^3 is like living in a big spherical tank of water, but when you try to swim through the wall you come out of the opposite wall upside down, like Pac-Man’s crazy uncle.