0. Introduce yourself to your colleague. Do they have any pets?

1. Show that homotopy is an equivalence relation on the set of continuous maps \(X \to Y \).

2. Suppose that \(f_0, f_1 : X \to Y \) and \(g_0, g_1 : Y \to Z \) are continuous maps. Show that if \(f_0 \simeq f_1 \) and \(g_0 \simeq g_1 \), then \(g_0 \circ f_0 \simeq g_1 \circ f_1 \).

3. In lecture I asserted that the maps \(f_0, f_1 : S^2 \to \mathbb{R}^3 \setminus 0 \) defined by
 \[
 f_0(x) = 2x + (1, 0, 0) \\
 f_1(x) = 3x + (0, 0, 1)
 \]
 are homotopic via the “straight-line homotopy”
 \[
 F(x, t) = (1 - t)f_0(x) + tf_1(x).
 \]
 (a) Convince yourself that if you fix \(x \in S^2 \) and let \(t \) vary, then \(F(x, t) \) traces out a straight line segment from \(f_0(x) \) to \(f_1(x) \).
 (b) Show that \(F \) takes values in \(\mathbb{R}^3 \setminus 0 \), so it’s really a homotopy between \(f_0 \) and \(f_1 \).