Solutions to Final Exam

Math 637

Wednesday, December 8, 2021

1. (a) Let \(f : M \to \tilde{N} \) be a submersion. Prove that the fibers of \(f \) give a foliation of \(M \).

 Solution: Let \(m = \dim M \) and \(n = \dim N \), so \(m \geq n \). By the Rank Theorem (Theorem 4.12), for every \(p \in M \) there are coordinate charts near \(p \) and \(f(p) \) in which \(f \) looks like

 \[
 (x^1, \ldots, x^n, x^{n+1}, \ldots, x^m) \mapsto (x^1, \ldots, x^n).
 \]

 In the domain of the chart on \(M \), the fibers of \(f \) are given by \(x^1 = c^1, \ldots, x^n = c^n \). Thus these coordinates serve as a flat chart for the foliation we want, perhaps after reversing the order of the coordinates to agree with Lee’s definition on page 501.

 (b) Let \(M \) be the Klein bottle, obtained as a quotient of the square in the usual way, and consider the foliation

 ![Diagram of a foliation](image)

 Describe the leaf that passes through the central point \((\frac{1}{2}, \frac{1}{2})\), and the leaf that passes through \((\frac{1}{2}, \frac{3}{2})\). (An informal description is fine. It would be good to draw a picture. Notice that the left and right ends of the square have been glued with a half twist.)

 Prove that the leaves of this foliation are not the fibers of any submersion \(f : M \to S^1 \). (Hint: I can think of several approaches. You might use the fact that a submersion has local sections, or...
that a submersion is locally of a certain form, or you could prove by hand that any smooth map \(f: M \to S^1 \) that is constant on the leaves of the foliation must fail to be a submersion at \((\frac{1}{2}, \frac{1}{2}) \ldots \)

Solution: The leaf through \((\frac{1}{2}, \frac{1}{2}) \) is a circle that "goes around" once. The leaf through \((\frac{1}{2}, \frac{1}{3}) \) is a circle that goes around twice, also passing through \((\frac{1}{2}, \frac{1}{3}) \).

For the claim that these leaves are not the fibers of a submersion, I'll prove it by hand, but other approaches are also fine. Let the usual coordinates on the square serve as coordinates on \(\tilde{M} \) near \((\frac{1}{2}, \frac{1}{2}) \), and suppose that \(f: M \to S^1 \) is a smooth map that's constant on the leaves of the foliation. Then \(f \) is constant in the \(x \)-direction, so \(\frac{\partial f}{\partial x} = 0 \). Next, for \(0 < h < \frac{1}{2} \) we have

\[
 f\left(\frac{1}{2}, \frac{1}{2} + h\right) = f\left(\frac{1}{2}, \frac{1}{2} - h\right),
\]

so

\[
 \frac{\partial f}{\partial y}\left(\frac{1}{2}, \frac{1}{2}\right) = \lim_{h \to 0} \frac{f\left(\frac{1}{2}, \frac{1}{2} + h\right) - f\left(\frac{1}{2}, \frac{1}{2} - h\right)}{2h} = 0.
\]

Thus the total derivative of \(f \) at \((\frac{1}{2}, \frac{1}{2}) \) is zero, so \(f \) is not a submersion.

2. Adapted from Problem 20-13: Characterization of Lie algebra actions that correspond to transitive Lie group actions.

Suppose we have an action of a finite-dimensional Lie algebra \(\mathfrak{g} \) on a smooth manifold \(M \): that is, we have a homomorphism from \(\mathfrak{g} \) to the Lie algebra of vector fields on \(M \). Given \(X \in \mathfrak{g} \), let \(\tilde{X} \) be the corresponding vector field on \(M \). Say that the Lie algebra action is **transitive** if for every \(p \in M \), the vectors \(\tilde{X}_p \in T_pM \) span \(T_pM \) as \(X \in \mathfrak{g} \) varies.

We have seen that a right action of a Lie group \(G \) on a manifold \(M \) gives rise to an action of its Lie algebra \(\mathfrak{g} \) on \(M \), by taking

\[
 \tilde{X}_p = \tilde{D}(\theta(p))_1(X),
\]
where $\theta(p) : G \to M$ is the orbit map $g \mapsto p \cdot g$. In lecture this was our definition, and in Lee’s book it’s equation (20.8) on page 526.

Argue that the Lie algebra action is transitive if and only if the orbit maps $\theta(p)$ are submersions. Prove that if M is connected, then the Lie group action is transitive if and only if the Lie algebra action is transitive in the sense above.

(Hints: On the midterm you proved that an equivariant map where the group acts transitively on the domain must have constant rank. And at one point you’ll want to remember that a submersion is an open map.)

Solution: By definition, the Lie group action is transitive if and only if the derivative of $\theta(p)$ is surjective at $1 \in G$ for all $p \in M$. If we let G act on itself by right multiplication, then $\theta(p)$ is G-equivariant:

$$(p \cdot g) \cdot h = p \cdot (g \cdot h).$$

Since G acts transitively on itself, we see that the derivative of $\theta(p)$ has constant rank, and in particular the derivative is surjective at 1 if and only if it’s a submersion.

Now if the the Lie group action is transitive, then the orbit map $\theta(p)$ is surjective for every $p \in M$, and a surjective map of constant rank is a submersion by the Global Rank Theorem (Theorem 4.14), so the Lie algebra action is transitive.

Conversely, if $\theta(p)$ is a submersion, then it is an open map (by Proposition 4.28), so the orbit of p, which is the image of $\theta(p)$, is open in M. Since M is a disjoint union of orbits, we see that every orbit is also closed. Because M is connected, this means there is only one orbit.