
Solutions to Homework 1

1. (a) Let R = Z[
√
−3]. Sketch the lattice in the complex plane.

Solution:

1

√
−3

(b) Prove that R is not integrally closed.

Hint: Think about the minimal polynomial of

ω = e2πi/3 =
−1 +

√
−3

2
.

Solution: The roots of x2 + x+ 1 = 0 are ω and ω̄ = ω2, so we
have a monic polynomial with coefficients in R that has a root in
frac(R) but not in R.
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(c) Prove that 2 is irreducible in R by reasoning about norms, where
N(a + b

√
−3) = a2 + 3b2. But prove that 2 is not prime by

showing that the quotient ring R/(2) is not an integral domain.

Solution: For any α ∈ R we have N(α) = α · ᾱ, where ᾱ is
the complex conjugate, so N(α · β) = N(α)N(β). Moreover, we
have N(α) = 1 if and only if α is a unit: if N(α) = 1 then ᾱ
is the inverse of α, while if α is a unit then N(α) · N(α−1) =
N(α ·α−1) = N(1) = 1, so N(α) is a positive integer that divides
1, so it must equal 1.

Now N(2) = 4, so if 2 factors as α · β and neither is a unit,
then we must have N(α) = N(β) = 2. But looking at the lattice,
we see that the circle of radius

√
2 does not contain any lattice

points.

On the other hand, we have R ∼= Z[x]/(x2 + 3), so

R/(2) ∼= Z[x]/(x2 + 3, 2)

∼= F2[x]/(x
2 + 3)

∼= F2[x]/(x+ 1)2.

This is not an integral domain because x+ 1 is a zero-divisor, so
(2) is not a prime ideal.

(d) Same for 1 +
√
−3.

Solution: We have N(1 +
√
−3) = 4, so the argument that it is

irreducible is the same as for 2.

The quotient ring R/(1 +
√
−3) is isomorphic to

Z[x]/(x2 + 3, x+ 1),

which is isomorphic to Z/4 by setting x = −1. This is not an
integral domain because 2 is a zero-divisor, so (1 +

√
−3) is not

a prime ideal.
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(e) Prove that the ideal m = (2, 1 +
√
−3) is maximal by showing

that the quotient ring R/m is a field. Prove that m is the only
prime ideal that contains 2 by reasoning about quotient rings.
Same for 1 +

√
−3.

Solution: The quotient ring R/m is isomorphic to

Z[x]/(x2 + 3, 2, x+ 1) ∼= Z/(4, 2) = F2,

which is a field.

The maximal ideals of R that contain 2 are in bijection with
the maximal ideals of R/(2) ∼= F2[x]/(x + 1)2, but there is only
one of those, namely (x+ 1).

The maximal ideals of R that contain 1+
√
−3 are in bijection

with the maximal ideals of R/(1+
√
−3) ∼= Z/4, but there is only

one of those, namely (2).

(f) Prove that m2 = 2m. Find the dimension of m/m2 as a vector
space over R/m. Prove that the principal ideals (2) and (1+

√
−3)

are not powers of m, so they do not factor as products of primes.

Solution: We have

m2 = (4, 2 + 2
√
−3,−2 + 2

√
−3) = (4, 2 + 2

√
−3) = 2m.

Knowing that m/m2 is a vector space over R/m ∼= F2, we can
find its dimension by finding its cardinality. Since m is isomor-
phic to Z2 as an Abelian group, m/m2 = m/2m is isomorpic to
(Z2)/(2Z2) = F2

2. Thus the dimension is 2.

If (2) factored as a product of primes, then each one would
contain 2, so each one would equal m. But (2) is not equal to m,
or to m2 = 2m, or to m3 = 4m, or any higher power of m: we see
that (2) is a subgroup of index 4 in R, while m is a subgroup of
index 2, m2 = 2m is a subgroup of index 8, m3 = 4m is a subgroup
of index 32, and so on.

The argument for (1 +
√
−3) is the same.
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(g) Let S = Z[ω]. Use the fact that S is a principal ideal domain,
and in fact a Euclidean domain (you may use this without proof),
to prove that the Krull dimension of R is 1.

Hint: Say “integral extension” and quote your favorite algebra
book.

(In the coordinate ring of an affine variety, m/m2 was the Zariski
cotangent space of the variety of the corresponding point. Be-
cause this m/m2 is too big, we want to say that it’s like a singular
point.)

Solution: We see that S is an integral extension of R, because it
was obtained by adjoining a root of x2+x+1. My favorite algebra
book is Dummit and Foote, where exercise 17 from §15.3 states
that if S is integral over R then their Krull dimensions agree; but
you will probably find a different reference. The Krull dimension
of S is 1 because it is a principal ideal domain, or because it is
an integral extension of Z.

(h) Let n = mS. Prove that n is a principal ideal. Is it still prime?
Describe the quotient ring S/n, which should contain R/m.

Solution: We have mS = (2, 2ω) = (2). To see that this is
prime, write

S/n = S/(2) ∼= Z[x]/(x2 + x+ 1, 2) ∼= F2[x]/(x
2 + x+ 1) ∼= F4.

(i) Find the dimension of n/n2 as a vector space over S/n.

Solution: Again we can find the dimension of n/n2 by finding
its cardinality. We have n = (2), so n2 = 2n as before, so n/n2

again has four elements; but since S/n = F4, this now says that
n/n2 is 1-dimensional over S/n.

2. (a) Let R = R[x, y]/(y2 + x2 − x3). Sketch the curve in R2.

Solution: If you first sketch y = x3 − x2
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Then you see that y = ±
√
x3 − x2 looks like this:

(b) Prove that R is not integrally closed.

Hint: Let z = y/x in frac(R), and prove that z2 ∈ R.

Solution: If z = y/x then

z2 =
y2

x2
=

x3 − x2

x2
= x− 1.

Thus z2 − (x − 1) is a monic polynomial with coefficients in R
that has a root in frac(R) but not in R.

(c) Prove that x is irreducible in R by reasoning about degrees. But
prove that x is not prime by showing that the quotient ring R/(x)
is not an integral.

Solution: As I suggested by email, it’s painful to reason about
degrees, and better is to consider a norm map from R to R[x]
given by

N(f(x, y)) = f(x, y)f(x,−y)

or
N(g(x) + yh(x)) = g(x)2 + (x2 − x3)h(x)2.

From the first description we see that N is multiplicative, and
thus that f(x, y) is a unit in R if and only if N(f) is a unit in R[x],
that is, a constant. Now N(x) = x2, so if x factors as a product
of two non-units f1 and f2 then N(f1) = cx and N(f2) = c−1x
for some c ∈ R \ 0. But from the second description of N we see
that this is impossible: if g2 + (x2 − x3)h2 = x then x divides g2,
so x divides g, which gives a contradiction.

We have R/(x) = R[x, y]/(y2 + x2 − x3, x) ∼= R[y]/(y2), which
is not an integral domain because y is a zero-divisor.
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(d) Same for y.

Solution: We have N(y) = x2 − x3 = x2(1 − x), so if y factors
as a product of two non-units f1 and f2 then up to scalars we
either have N(f1) = x and N(f2) = x − x2, or N(f1) = x2

and N(f2) = 1 − x. We have already seen that N(f1) = x is
impossible, and by a similar argument we see that N(f2) = 1−x
is impossible.

We have R/(y) = R[x, y]/(y2 + x2 − x3, y) ∼= R[x]/(x2 − x3),
which is not an integral domain because x is a zero-divisor.

(e) Prove that the ideal m = (x, y) is maximal by showing that the
quotient ring R/m is a field. Prove that m is the only prime ideal
that contains x by reasoning about quotient rings. (But don’t
bother with y: it is contained in another maximal ideal, as you
can see from the picture.)

Solution: We have

R/m = R[x, y]/(y2 + x2 − x3, x, y) = R[x, y]/(x, y) ∼= R,

which is a field. The maximal ideals of R that contain x are in
bijection with the maximal ideals of R/(x) ∼= R[y]/(y2), but there
is only one of those, namley (y).

(f) Find the dimension of m/m2 as a vector space over R/m. Prove
that the principal ideal (x) is not a power of m, so it does not
factor as a product of primes.

Solution: I claim that m/m2 is 2-dimensional. To see this
clearly, note that every element of R can be written uniquely
as g(x) + yg(x), so a basis for m as an R-vector space is given by
x, y, x2, xy, x3, x2y, x4, x3y, . . . , while a basis for

m2 = (x2, xy, y2) = (x2, xy,−x2 + x3) = (x2, xy)

is given by x2, xy, x3, x2y, x4, x3y, . . . . Thus a basis for m/m2 is
given by x and y.

To see that (x) is not a power of m, note that the dimension of
R/(x) as an R-vector space is 2, while thinking about the bases
above we find that the dimension of R/mk is 2k − 1.
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(g) Let S = R[z]. Describe the normalization map φ : R → S that
sends y/x to z: where does it send x and y? Prove that the Krull
dimension of R is 1.

Solution: If z = y/x then z2 = y2/x2 = x− 1, so φ should send
x to z2+1. Then it should send y = x ·y/x to (z2+1) ·z = z3+z.
Now S is an integral extension of R, obtained by adjoining a root
of the monic polynomial z2− (x−1), so they have the same Krull
dimension. And the Krull dimension of R[z] is 1 because it’s a
principal ideal domain.

(h) Let n = φ(m)S. Prove that n is a principal ideal. Is it still prime?
Describe the quotient ring S/n, which should contain R/m.

Solution: We have n = (z2+1, z3+z) = (z2+1), which is prime
because S/n ∼= C is a field.

(i) Find the dimension of n/n2 as a vector space over S/n.

Solution: We can find the dimension of n/n2 over S/n ∼= C by
finding its dimension as a real vector space and dividing by 2. By
the third isomorphism theorem,

S/n2

n/n2
∼= S/n.

Now S/n = R[z]/(z2 + 1) is 2-dimensional, with a basis given by
1 and z; and S/n2 = R[z]/(z4 + 2z2 + 1) is 4-dimensional, with a
basis given by 1, z, z2, and z3; so n/n2 is 2-dimensional as a real
vector space, hence 1-dimensional as a complex vector space.

3. Optional: I might have preferred to work with R[x, y]/(y2 − x2 − x3)
because the picture is prettier, but then the ideal m = (x, y) splits in
the normalization rather than being inert, so the analogy with Z[

√
−3]

is not as good. . .

Can you find a square-free integer D with D ≡ 1 (mod 4) such that
the maximal ideal m = (2, 1 +

√
D) in R = Z[

√
D] splits when you

extend to S = Z[1+
√
D

2 ]?

Solution: It works with D = −7. Then m is prime in R, because
R/m ∼= F2 as before. But in S, if we let

α =
1 +

√
−7

2

then we find that α2 − α + 2 = 0, so 2 = α(1− α), and we can check
that S/α ∼= S/(1− α) ∼= F2 and (α, 1− α) = 1.
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