Again feel free to do the problems out of order; even if you don’t manage to solve some part, you may quote the result in a later part.

1. (20 points) Which of the following polynomials are irreducible in \(\mathbb{Z}[x] \)? You may refer to the list of irreducible polynomials in \(\mathbb{Z}_2[x] \) and \(\mathbb{Z}_3[x] \) on the back page.
 (a) \(x^4 + x^2 - 2 \)
 (b) \(x^4 - 2x^2 + 1 \)
 (c) \(x^4 - 2x^2 - 1 \)
 (d) \(x^4 - 2x^2 - 2 \)

2. (20 points) Let \(F \subset K \) be a field extension.
 (a) Let \(f, g \in F[x] \). Show that if \(f \) and \(g \) have a common root in \(K \), that is, if there is an \(\alpha \in K \) such that \(f(\alpha) = g(\alpha) = 0 \), then their greatest common divisor in \(F[x] \) is not 1. (Caution: If \(\alpha \) were in \(F \) you could use the root-factor theorem, but \(\alpha \) is in \(K \).)
 (b) Show that if \(f, g \in F[x] \) have a common root \(\alpha \in K \) and \(f \) is irreducible then \(f \mid g \).
 (c) Let \(f, g \in F[x] \), let \(n = \deg f \), and let \(q = \deg g \). Show that if \(g \) has \(q \) distinct roots in \(K \) and \(f \mid g \) then \(f \) has \(n \) distinct roots in \(K \).
 (d) Suppose that \(f \in F[x] \) is irreducible, so \(F[x]/(f) \) is a field containing \(F \). Show that \(f \) has a root in \(F[x]/(f) \). Don’t work hard.
Later in the term we will prove the following generalization of Fermat’s little theorem, but for now we will take it as given:

Proposition. *In a field with* \(q \) *elements, every element* \(\alpha \) *satisfies* \(\alpha^q = \alpha \).*

3. (30 points) Apply the results of problem 2 to the following situation: let \(F = \mathbb{Z}_p \), let \(f \in F[x] \) be an irreducible polynomial of degree \(n \), let \(K = F[x]/(f) \), let \(q = p^n \), and let \(g = x^q - x \in F[x] \).

(a) Show that \(K = F[x]/(f) \) is a field with \(q \) elements.

(b) Deduce that \(g \) has \(q \) distinct roots in \(K \).

(c) Show that \(f \mid g \) in \(F[x] \).

(d) Now let \(K' \) be an arbitrary field with \(q \) elements. We saw in lecture that \(K' \) contains \(F = \mathbb{Z}_p \). Show that \(f \) has \(n \) distinct roots in \(K' \).

(e) Let \(\alpha \in K' \) be a root of \(f \), which we know exists by part (d). As usual let \(\text{ev}_\alpha : F[x] \to K' \) be the evaluation homomorphism \(\text{ev}_\alpha(h) = h(\alpha) \). Show that its kernel \(\ker(\text{ev}_\alpha) = (f) \). Conclude that its image \(\text{im}(\text{ev}_\alpha) \subset K' \) is isomorphic to \(K \).

(f) Argue that \(\text{im}(\text{ev}_\alpha) \) is all of \(K' \), so \(K \cong K' \).

Thus we have proved that if there is an irreducible polynomial \(f \in \mathbb{Z}_p[x] \) of degree \(n \) then any two fields of \(q = p^n \) elements are isomorphic. On Thursday we will prove that such an \(f \) exists for all \(p \) and \(n \).

4. (30 points) Now we will work out what the previous problem means in an example. Let \(K' = \mathbb{Z}[i]/(3) \).

(a) Show that the map \(\varphi : K' \to K' \) defined by \(\varphi(\alpha) = \alpha^3 \) is a homomorphism. (It is called the *Frobenius automorphism* of \(K' \).)

(b) Show that \(K' \) is a field.

(c) Show that the following nine elements of \(K' \) are distinct, and they account for all of \(K' \):

\[
\begin{array}{ccc}
0 & 1 & 2 \\
\bar{i} & \bar{1+i} & \bar{2+i} \\
\bar{2i} & \bar{1+2i} & \bar{2+2i}
\end{array}
\]

You may omit the bars if you like.
(d) For each of the nine elements α in part (c), calculate $\varphi(\alpha) = \alpha^3$. Conclude that φ is an isomorphism. Then calculate $\alpha^9 = (\alpha^3)^3$; your answer should agree with proposition given earlier.

(e) Consider the irreducible quadratics in $\mathbb{Z}_3[x]$:
\[f_1 = x^2 + 1 \quad f_2 = x^2 + x + 2 \quad f_3 = x^2 + 2x + 2 \]
By problem 3(d), each one has two distinct roots in K'. Find them.

(f) We have seen in lecture that $K' = \mathbb{Z}[\bar{i}]/(3)$ is isomorphic to $\mathbb{Z}_3[x]/(f_1)$. But the previous problem also yields isomorphisms from $\mathbb{Z}_3[x]/(f_2)$ and $\mathbb{Z}_3[x]/(f_3)$ to K'. Choose either f_2 or f_3 and one of its roots $\alpha \in K'$. Let $K = \mathbb{Z}_3[x]/(f_2)$ or $\mathbb{Z}_3[x]/(f_3)$ as appropriate, and describe explicitly the isomorphism from K to K' constructed in the previous problem; that is, where does the isomorphism send
\[0, 1, 2, \bar{x}, \bar{x}+1, x+2, 2x, 2x+1, 2x+2 \in K? \]
Monic irreducible polynomials in $\mathbb{Z}_2[x]$:

Degree 2:

$$x^2 + x + 1$$

Degree 3:

$$x^3 + x + 1 \quad x^3 + x^2 + 1$$

Degree 4:

$$x^4 + x + 1 \quad x^4 + x^3 + 1 \quad x^4 + x^3 + x^2 + x + 1$$

Monic irreducible polynomials $\mathbb{Z}_3[x]$:

Degree 2:

$$x^2 + 1 \quad x^2 + x + 2 \quad x^2 + 2x + 2$$

Degree 3:

$$x^3 + 2x + 1 \quad x^3 + 2x + 2 \quad x^3 + x^2 + 2 \quad x^3 + x^2 + x + 2
x^3 + x^2 + 2x + 1 \quad x^3 + 2x^2 + 1 \quad x^3 + 2x^2 + x + 1 \quad x^3 + 2x^2 + 2x + 2$$

Degree 4:

$$x^4 + x + 2 \quad x^4 + 2x + 2 \quad x^4 + x^2 + 2
x^4 + x^2 + x + 1 \quad x^4 + x^2 + 2x + 1 \quad x^4 + 2x^2 + 2
x^4 + x^3 + 2 \quad x^4 + x^3 + 2x + 1 \quad x^4 + x^3 + x^2 + 1
x^4 + 2x^3 + x + 1 \quad x^4 + 2x^3 + x^2 + 2 \quad x^4 + 2x^3 + 2x^2 + 2
x^4 + 2x^3 + x^2 + x + 2 \quad x^4 + 2x^3 + x^2 + 2x + 1 \quad x^4 + 2x^3 + 2x^2 + x + 2$$