A first course in manifolds, mainly out of Jack Lee’s Smooth Manifolds and Riemannian Manifolds, making a bee-line for the latter.

- Reading 1 (due 1/11):
- Riemannian Manifolds Chapter 2 and see what you make of it, or
- Smooth Manifolds Chapters 1–3 and see how far you get.

- I am away Thursday 1/15 and Tuesday 1/20.
- Homework 1 (due 2/3):
- Write down an explicit diffeomorphism between
**CP**^{1}and*S*^{2}. - Smooth Manifolds problems 2-10 and 3-4.
- Show that if
*X*and*Y*are topological spaces, π:*E*→*Y*is a vector bundle, and*f*:*X*→*Y*is continuous, then*f*^{*}*E*is naturally a vector bundle over*X*. If the definition of vector bundle given in class was too vague for you, have a look at chapter 10 of Smooth Manifolds.

- Write down an explicit diffeomorphism between
- Reading 2 (due 2/15): Riemannian Manifolds, Chapters 3 and 4.
- Homework 2 (due 2/24): Smooth Manifolds problems 4-6, 8-13 (give an explicit formula for the vector field), 9-3 (choose one part), 9-7, 11-4, and 16-2.
- Reading 3 (due 3/8): Riemannian Manifolds, Chapters 5 and 6.
- Homework 3 (due 3/19): pdf tex.
- Make-up lecture: Monday 4/6, 10:20–11:10, Physics 299.
- I am away Tuesday 4/7 and Thursday 4/9.
- We will meet at the regular time and place on 4/14, 14/16, and 4/21.
- Homework 4 (due 6/2):
- Lee defines the exponential map on a Lie group
*G*as follows: Given a tangent vector*X*∈*T*(_{I}*G*), extend it to a left-invariant vector field, integrate it to get a flow, and let exp(*X*) be the image of*I*at time 1. Show that if*G*= GL_{n}(**R**) then this agrees with the usual (matrix) exp. Optional: Show the same if*G*is a Lie subgroup of GL_{n}(**R**). - Riemannian Manifolds #3-12b, and as many of the preceding problems as you need to make it work.
- Consider
*S*^{3}as the unit sphere in**C**^{2}, and the map from SU(2) to*S*^{3}sending a matrix to its first column. Argue (briefly but explicitly) that this is a diffeomorphism. Show that the pull-back of the round metric is a bi-invariant metric. - Riemannian Manifolds #5-11.
- Riemannian Manifolds #7-5.
- If
*M*is a compact Riemannian manifold then for any*p ∈ M*, the exponential map*T*(_{p}*M*) ←*M*is surjective. This follows from the Hopf–Rinow theorem, which Lee proves in chapter 6; there is also a nice proof in chapter 10 of Milnor’s*Morse theory*. In contrast, show that if*G*= GL_{2}^{+}(**R**) then the (matrix) exponential map is not surjective, and in particular that-1 1 0 -1

- Lee defines the exponential map on a Lie group