Enhanced Coursework

Due May 14, 2011

1. (a) Draw pictures of $S^2 \vee S^1$ and its universal cover.
 (b) Let X be S^2 union a line segment connecting the north and south poles. Draw pictures of X and its universal cover.

2. Let G be a finite group. Show that any homomorphism $\varphi : G \to \mathbb{Z}$ is zero.

3. The Borsuk–Ulam theorem states that for any map $f : S^2 \to \mathbb{R}^2$ there is an $x \in S^2$ with $f(-x) = f(x)$. The proof reduces to the following lemma: there is no odd map $g : S^2 \to S^1$, i.e. no map with $g(-x) = -g(x)$ for all $x \in S^2$. In lecture we proved this lemma by showing that an odd map $S^1 \to S^1$ induces a nonzero map on π_1, hence is not nullhomotopic, and considered g restricted to the equator to get a contradiction. Give a second proof of the lemma, as follows.
 (a) Let $q : S^2 \to \mathbb{RP}^2$ be the universal cover and $p : S^1 \to S^1$ the double cover $p(z) = z^2$. Observe that an odd map $g : S^2 \to S^1$ descends to a map h as in this diagram:

 \[
 \begin{array}{ccc}
 S^2 & \xrightarrow{g} & S^1 \\
 q \downarrow & & \downarrow p \\
 \mathbb{RP}^2 & \xrightarrow{h} & S^1.
 \end{array}
 \]

 (b) Use the lifting criterion to produce a map $\tilde{h} : \mathbb{RP}^2 \to S^1$ lifting h.

 \[
 \begin{array}{ccc}
 S^1 & \xrightarrow{p} & S^1 \\
 \tilde{h} \downarrow & & \downarrow h \\
 \mathbb{RP}^2 & \xrightarrow{h} & S^1.
 \end{array}
 \]

 (c) Use the unique lifting property to show that $\tilde{h} \circ q = g$, which contradicts the assumption that g was odd.

4. Recall that \mathbf{Toph}, is the category whose objects are pointed spaces and whose arrows are homotopy classes of maps (homotopic rel. basepoint), and \mathbf{Grp} is the category whose objects are groups and arrows are group homomorphisms.
 A map $f : (X, x_0) \to (S^1, 1)$ induces a map $f_* : \pi_1(X, x_0) \to \pi_1(S^1, 1) = \mathbb{Z}$.

1
Show that the map
\[\Hom_{\text{Top}_*}((X,x_0),(S^1,1)) \to \Hom_{\text{Grp}}(\pi_1(X,x_0),\mathbb{Z}) \]
\[f \mapsto f_* \] (\ast)

is injective, as follows.

(a) Let \(G \) be any group, \(e \in G \) the identity, and \(\varphi : G \times G \to G \) a homomorphism with \(\varphi(g,e) = g = \varphi(e,g) \) for all \(g \in G \). [At this point I meant to write “Conclude that \(\varphi(g,h) = gh \) for all \(g,h \in G \).” Many of you figured this out.] (Optional: Conclude that \(G \) is abelian.)

(b) Let \(m : S^1 \times S^1 \to S^1 \) be the multiplication map \(m(z,w) = zw \).
Apply part (a) to \(m_* : \pi_1(S^1) \times \pi_1(S^1) \to \pi_1(S^1) \) to conclude that \(m_* \) is the multiplication in \(\pi_1(S^1) \). (We are dealing with several groups here: \(S^1 \) with complex multiplication, \(\pi_1(S^1,1) \) with concatenation of paths, and \(\mathbb{Z} \) with addition. Do not get confused about which group you are in.)

(c) Define a group structure on the left-hand side of (\ast). (Use \(m \) to multiply elements of \(S^1 \) or we’ll all go nuts.)

(d) Define a group structure on the right-hand side of (\ast).

(e) Show that the map in (\ast) is a group homomorphism.

(f) Let \((X,x_0)\) be any pointed space and \(f : (X,x_0) \to (S^1,1) \) a map such that \(f_* : \pi_1(X,x_0) \to \mathbb{Z} \) is the zero map. Show that \(f \) is nullhomotopic. (Hint: Consider the universal cover \(p : \tilde{X} \to S^1 \).)

Conclude that the map in (\ast) is injective.

5. Optional: * Suppose that \(X \) is good in the sense that it has a universal cover and admits partitions of unity. Show that the map in (\ast) above is also surjective, as follows. Let \(G = \pi_1(X,x_0) \) and \(p : \tilde{X} \to X \) be the universal cover. Recall that \(\tilde{X} \) looks locally like \(X \times G \); that is, we can choose an open cover \(\{U_\alpha\} \) of \(X \) and maps \(\psi_\alpha : p^{-1}(U_\alpha) \to G \), each of which gives a bijection with between the fibres of \(p \) and \(G \). Choose a partition of unity \(\{\rho_\alpha\} \) subordinate to the cover \(\{U_\alpha\} \).

Now given a homomorphism \(\varphi : G \to \mathbb{Z} \), define a map \(F : \tilde{X} \to \mathbb{R} \) by
\[F(\tilde{x}) = \sum_\alpha \rho_\alpha(p(\tilde{x})) \cdot \varphi(\psi_\alpha(\tilde{x})) \]

Observe that this is well-defined. Show that it descends to a map \(f : X \to S^1 \) with \(f_* = \varphi \).

*Really. You have better things to do with your time than work on this problem.