Solutions to Homework 2

1. Let X and Y be topological spaces. Show that homotopy is an equivalence relation on $\text{Hom}(X, Y)$.

Solution: First we show that homotopy is reflexive. Given $f : X \to Y$, the map $h : X \times I \to Y$ given by $(x, t) \mapsto f(x)$ is a homotopy from f to f.

Next we show that homotopy is symmetric. Given $f, g : X \to Y$ and a homotopy h from f to g, the map $X \times I \to Y$ given by $(x, t) \mapsto h(x, 1-t)$ is a homotopy from g to f.

Last we show that homotopy is transitive. Given $f, g, k : X \to Y$, a homotopy h from f to g, and a homotopy h' from g to k, define a map $H : X \times I \to Y$ by

$$H(x, t) = \begin{cases} h(x, 2t) & \text{if } t \in [0, \frac{1}{2}] \\ h'(x, 2t-1) & \text{if } t \in [\frac{1}{2}, 1]. \end{cases}$$

This is well-defined when $t = \frac{1}{2}$ because $h(x, 1) = g(x) = h'(x, 0)$. It is continuous on the closed subsets $X \times [0, \frac{1}{2}]$ and $X \times [\frac{1}{2}, 1]$ of $X \times I$, hence is continuous on the whole domain. Lastly $H(x, 0) = h(x, 0) = f(x)$ and $H(x, 1) = h'(x, 1) = k(x)$, so H is a homotopy from f to k.

2. Let X, Y, and Z be topological spaces, and $f_0, f_1 : X \to Y$ and $g_0, g_1 : Y \to Z$. If $f_0 \simeq f_1$ and $g_0 \simeq g_1$, show that $g_0 \circ f_0 \simeq g_1 \circ f_1$.

Solution: Let $h : X \times I \to Y$ be a homotopy from f_0 to f_1 and $h' : Y \times I \to Z$ a homotopy from g_0 to g_1. Define $H : X \times I \to Z$ by $H(x, t) = h'(h(x, t), t)$. Then H is continuous, $H(x, 0) = h'(h(x, 0), 0) = g_0(f_0(x))$, and $H(x, 1) = h'(h(x, 1)) = h_1(f_1(x))$, so H is a homotopy from $g_0 \circ f_0$ to $g_1 \circ f_1$.

3. Let X be a topological space. Show that the following are equivalent:

 (a) X is contractible.

 (b) For every space Y, every map $f : X \to Y$ is nullhomotopic.

 (c) For every space Z, every map $g : Z \to X$ is nullhomotopic.

Solution: Following the hint, we will use the fact that X is contractible if and only if the identity map $1 : X \to X$ is nullhomotopic.

$(a) \Rightarrow (b)$ and (c). Since X is contractible, the identity map $1 : X \to X$ is homotopic to a constant map $c : X \to X$. Thus $f = f \circ 1 \simeq f \circ c$, which is a constant map, and similarly $g = 1 \circ g \simeq c \circ g$, which is constant.

$(b) \Rightarrow (a)$. Take $Y = X$ and $f = 1$. Then 1 is nullhomotopic, so X is contractible.
(c) ⇒ (a): Take \(Z = X \) and \(g = 1 \). Then \(1 \) is nullhomotopic, so \(X \) is contractible.

4. Let \(X \) be a topological space. Define \(x \sim x' \) if there is a path from \(x \) to \(x' \). We define \(\pi_0(X) = X/\sim \).

(a) Show that a map \(f : X \to Y \) induces a map \(\pi_0(X) \to \pi_0(Y) \).

Solution: If \(x \in X \), let \([x] \in \pi_0(X)\) denote the path component of \(X \). Define \(f_* : \pi_0(X) \to \pi_0(Y) \) by \(f_*([x]) = [f(x)] \). This is well-defined, as follows: if \(x \sim x' \), let \(\gamma : I \to X \) be a path from \(x \) to \(x' \); then \(f \circ \gamma \) is a path from \(f(x) \) to \(f(x') \), so \(f(x) \sim f(x') \).

(b) Show that homotopic maps \(X \to Y \) induce the same map on \(\pi_0 \).

Solution: Let \(f, g : X \to Y \) be homotopic maps and \(h : X \times I \to Y \) a homotopy from \(f \) to \(g \). Given \(x \in X \), let \(\gamma(t) = h(x, t) \); then \(\gamma \) is a path from \(f(x) \) to \(g(x) \), so \(f(x) \sim g(x) \). Thus \(f_*([x]) = [f(x)] = [g(x)] = g_*([x]) \).

(c) Show that a homotopy equivalence induces a bijection on \(\pi_0 \).

Solution: First observe that if \(f : X \to Y \) and \(g : Y \to Z \) then for every \(x \in X \) we have \(g_* (f_* ([x])) = g_* ([f(x)]) = [g(f(x))] = \) \((g \circ f)_* ([x]) \); that is, \(g_* \circ f_* = (g \circ f)_* \). Next observe that if \(1 : X \to X \) is the identity then \(1_* : \pi_0(X) \to \pi_0(X) \) is also the identity.

Now let \(f : X \to Y \) be a homotopy equivalence with homotopy inverse \(g : X \to Y \). Then \(g \circ f \simeq 1 \), so \(g_* \circ f_* = (g \circ f)_* = 1_* = 1 \). Similarly, \(f \circ g \simeq 1 \), so \(f_* \circ g_* = 1 \). Thus \(g_* \) is an inverse to \(f_* \), so \(f_* \) is a bijection.

5. Let \(X \) be a topological space and \(f : S^1 \to X \). Show that the following are equivalent:

(a) \(f \) is nullhomotopic.

(b) \(f \) extends to a map \(D^2 \to X \); that is, there is a map \(g : D^2 \to X \) such that the restriction \(g|_{\partial D^2} = f \).

Solution: By definition, a homotopy from a constant map to \(f \) is a map \(h : S^1 \times I \to X \) that is constant on \(S^1 \times \{0\} \) and whose restriction to \(S^1 \times \{1\} \) is \(f \). In problem 4 last week we exhibited a homeomorphism \((S^1 \times I)/(S^1 \times \{0\}) \to D^2 \) which mapped \(S^1 \times \{1\} \) to \(\partial D^2 \); thus maps \(h \) as above are in bijection with maps \(g : D^2 \to X \) whose restriction to \(\partial D^2 \) is \(f \).