Solutions to Homework 4

1. (a) Give an example of a map \(f : (X,p) \to (Y,q) \) which is injective but not surjective, for which the induced map \(f_* : \pi_1(X,p) \to \pi_1(Y,q) \) is injective but not surjective.

Solution: Let \(f \) be the inclusion of the circle \(S^1 \times \{1\} \) in the torus \(S^1 \times S^1 \). Then \(f_* \) is the inclusion \(Z \times 0 \to Z \times Z \). Or let \(f : [0,\frac{1}{2}] \to S^1 \) be defined by \(f(x) = e^{2\pi ix} \), so \(f_* : 0 \to Z \).

(b) Give an example where \(f \) is injective but not surjective and \(f_* \) is injective but not surjective.

Solution: Let \(f \) be the inclusion of the torus \(S^1 \times S^1 \) in the solid torus \(S^1 \times D^2 \). Then \(f_* : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \) is projection onto the first factor. Or let \(f \) be the inclusion of \(S^1 \) in \(S^2 \) as the equator, so \(f_* : \mathbb{Z} \to 0 \).

(c) Give an example where \(f \) is surjective but not injective and \(f_* \) is injective but not surjective.

Solution: Let \(f : S^1 \to S^1 \) be defined by \(f(z) = z^2 \). Then \(f_* : \mathbb{Z} \to \mathbb{Z} \) is multiplication by 2. Or let \(f : [0,1] \to S^1 \) be defined by \(f(x) = e^{2\pi ix} \), so \(f_* : 0 \to \mathbb{Z} \).

(d) Give an example where \(f \) is surjective but not injective and \(f_* \) is surjective but not injective.

Solution: Let \(f : S^1 \times S^1 \to S^1 \) be projection onto the first factor. Then \(f_* : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \) is projection onto the first factor. Or let \(f : S^1 \times I \to D^2 \) be defined by \(f(z,t) = tz \), so \(f_* : \mathbb{Z} \to 0 \).

(e) Give any other examples along these lines that you think are interesting.

Solution: Consider the inclusion \(i : S^1 \to \mathbb{C} \setminus \{0\} \) and the retraction \(r \) the other way defined by \(r(z) = z/|z| \). Then \(i \) is injective but not surjective, \(r \) is surjective but not injective, and \(i_* \) and \(r_* \) are both bijective.

2. Let \(G \) be a group.

(a) Say what it means for a subgroup \(N \) of \(G \) to be normal.

Solution: For every \(n \in N \) and \(g \in G \) we have \(gng^{-1} \in N \). (Note that we do not require \(gng^{-1} = n \); that is a central subgroup, not a normal subgroup.)

(b) Show that if \(\varphi : G \to H \) kills \(N \) then there is a unique map \(\psi : G/N \to H \) with \(\psi \circ \rho = \varphi \), where \(\rho : G \to G/N \) is the natural map.

Solution: Given an element \(x \in G/N \), choose a \(g \in G \) with \(\rho(g) = x \) and define \(\psi(x) = \varphi(g) \). If \(g' \) is another element with \(\rho(g') = x \) then \(\rho(g'g^{-1}) = xx^{-1} = 1 \), so \(g'g^{-1} \in N \), so \(\varphi(g') = \varphi(g)g^{-1} \varphi(g) = 1 \cdot \varphi(g) \); thus \(\psi \) is well-defined.

Next we show that \(\psi \) is a group map. Given \(x,x' \in G/N \), choose \(g,g' \in G \) with \(\rho(g) = x \) and \(\rho(g') = x' \). Then \(\psi(xx') = \varphi(gg') = \varphi(g)\varphi(g') = \psi(x)\psi(x') \), as desired.

Last we show that \(\psi \) is unique. Suppose that \(\psi' : G/N \to H \) is another map with \(\psi' \circ \rho = \varphi = \psi \circ \rho \). Since \(\rho \) is surjective, this implies that \(\psi' = \psi \), as we saw in the first homework.

Solution: Let $\varphi : G \to H$ be any map. For any $g_1, g_2 \in G$ we have

$$\varphi([g_1, g_2]) = \varphi(g_1 g_2 g_1^{-1} g_2^{-1}) = \varphi(g_1)\varphi(g_2)\varphi(g_1)^{-1}\varphi(g_2)^{-1} = [\varphi(g_1), \varphi(g_2)].$$

Thus φ takes generators of $[G, G]$ to elements (generators in fact) of $[H, H]$, so $\varphi([G, G]) \subset [H, H]$.

If $\sigma : G \to G$ is an automorphism then $\sigma([G, G]) \subset [G, G]$ and, since σ^{-1} is an automorphism, $[G, G] = \sigma([G, G]) \subset \sigma([G, G])$, so $\sigma([G, G]) = [G, G]$, as required.

In particular, for any $g \in G$ the automorphism $\sigma(x) = gxg^{-1}$ preserves $[G, G]$, so $[G, G]$ is normal.

(b) Show that the quotient group $G/[G, G]$ is Abelian.

Solution: Let $x, y \in G/[G, G]$. Since the natural map $\rho : G \to G/[G, G]$ is surjective, we can choose $g, h \in G$ with $\rho(g) = x$ and $\rho(h) = y$. Then $[x, y] = \rho([g, h])$, but $[g, h] \in [G, G]$ which ρ kills, so $[x, y] = 1$, so x and y commute.

(c) Show that if A is Abelian and $\varphi : G \to A$ is any map, then there is a unique $\psi : G/[G, G] \to A$ with $\psi \circ \rho = \varphi$.

Solution: By problem 2(b), it suffices to show that φ kills $[G, G]$, or in fact just the generators of $[G, G]$. If $g, h \in G$ then $\varphi([g, h]) = [\varphi(g), \varphi(h)] = 1$ since A is Abelian.

(d) Describe the Abelianisation of the dihedral group $D_n = \langle r, s \mid r^n = s^2 = 1, rs = sr^{-1} \rangle$.

Solution: Since D_n is generated by two elements r and s, its commutator subgroup is the normal subgroup generated by $[r, s]$. Modding out by this amounts to imposing the relation $[r, s] = 1$, or equivalently $rs = sr$. We already have $rs = sr^{-1}$, so we get

$$1 = [r, s] = rsr^{-1}s^{-1} = r \cdot rs \cdot s^{-1} = r^2.$$

If n is odd then this and $r^n = 1$ imply that $r = 1$, so

$$D_n/[D_n, D_n] = \langle r, s \mid r = s^2 = 1 \rangle = \mathbb{Z}/2.$$

If n is even then

$$D_n/[D_n, D_n] = \langle r, s \mid r^2 = s^2 = 1, rs = sr \rangle = \mathbb{Z}/2 \times \mathbb{Z}/2.$$

2